These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 12007647)
1. Osmolarity hypersensitivity of hog1 deleted mutants is suppressed by mutation in KSS1 in budding yeast Saccharomyces cerevisiae. Lee SJ; Park SY; Na JG; Kim YJ FEMS Microbiol Lett; 2002 Mar; 209(1):9-14. PubMed ID: 12007647 [TBL] [Abstract][Full Text] [Related]
2. Two putative MAP kinase genes, ZrHOG1 and ZrHOG2, cloned from the salt-tolerant yeast Zygosaccharomyces rouxii are functionally homologous to the Saccharomyces cerevisiae HOG1 gene. Iwaki T; Tamai Y; Watanabe Y Microbiology (Reading); 1999 Jan; 145 ( Pt 1)():241-248. PubMed ID: 10206704 [TBL] [Abstract][Full Text] [Related]
3. Response to high osmotic conditions and elevated temperature in Saccharomyces cerevisiae is controlled by intracellular glycerol and involves coordinate activity of MAP kinase pathways. Wojda I; Alonso-Monge R; Bebelman JP; Mager WH; Siderius M Microbiology (Reading); 2003 May; 149(Pt 5):1193-1204. PubMed ID: 12724381 [TBL] [Abstract][Full Text] [Related]
4. Expression of YAP4 in Saccharomyces cerevisiae under osmotic stress. Nevitt T; Pereira J; Azevedo D; Guerreiro P; Rodrigues-Pousada C Biochem J; 2004 Apr; 379(Pt 2):367-74. PubMed ID: 14680476 [TBL] [Abstract][Full Text] [Related]
5. A third osmosensing branch in Saccharomyces cerevisiae requires the Msb2 protein and functions in parallel with the Sho1 branch. O'Rourke SM; Herskowitz I Mol Cell Biol; 2002 Jul; 22(13):4739-49. PubMed ID: 12052881 [TBL] [Abstract][Full Text] [Related]
6. Different signalling pathways contribute to the control of GPD1 gene expression by osmotic stress in Saccharomyces cerevisiae. Rep M; Albertyn J; Thevelein JM; Prior BA; Hohmann S Microbiology (Reading); 1999 Mar; 145 ( Pt 3)():715-727. PubMed ID: 10217506 [TBL] [Abstract][Full Text] [Related]
7. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Albertyn J; Hohmann S; Thevelein JM; Prior BA Mol Cell Biol; 1994 Jun; 14(6):4135-44. PubMed ID: 8196651 [TBL] [Abstract][Full Text] [Related]
8. Tunicamycin Sensitivity-Suppression by High Gene Dosage Reveals New Functions of the Yeast Hog1 MAP Kinase. Hernández-Elvira M; Martínez-Gómez R; Domínguez-Martin E; Méndez A; Kawasaki L; Ongay-Larios L; Coria R Cells; 2019 Jul; 8(7):. PubMed ID: 31336877 [TBL] [Abstract][Full Text] [Related]
9. A quantitative study of the Hog1 MAPK response to fluctuating osmotic stress in Saccharomyces cerevisiae. Zi Z; Liebermeister W; Klipp E PLoS One; 2010 Mar; 5(3):e9522. PubMed ID: 20209100 [TBL] [Abstract][Full Text] [Related]
10. Cdc42-Specific GTPase-Activating Protein Rga1 Squelches Crosstalk between the High-Osmolarity Glycerol (HOG) and Mating Pheromone Response MAPK Pathways. Patterson JC; Goupil LS; Thorner J Biomolecules; 2021 Oct; 11(10):. PubMed ID: 34680163 [TBL] [Abstract][Full Text] [Related]
11. Cdc37p is involved in osmoadaptation and controls high osmolarity-induced cross-talk via the MAP kinase Kss1p. Yang XX; Hawle P; Bebelman JP; Meenhuis A; Siderius M; van der Vies SM FEMS Yeast Res; 2007 Sep; 7(6):796-807. PubMed ID: 17451450 [TBL] [Abstract][Full Text] [Related]
12. Hyperosmotic stress response and regulation of cell wall integrity in Saccharomyces cerevisiae share common functional aspects. Alonso-Monge R; Real E; Wojda I; Bebelman JP; Mager WH; Siderius M Mol Microbiol; 2001 Aug; 41(3):717-30. PubMed ID: 11532139 [TBL] [Abstract][Full Text] [Related]
13. Ptc1, a type 2C Ser/Thr phosphatase, inactivates the HOG pathway by dephosphorylating the mitogen-activated protein kinase Hog1. Warmka J; Hanneman J; Lee J; Amin D; Ota I Mol Cell Biol; 2001 Jan; 21(1):51-60. PubMed ID: 11113180 [TBL] [Abstract][Full Text] [Related]
14. The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae. O'Rourke SM; Herskowitz I Genes Dev; 1998 Sep; 12(18):2874-86. PubMed ID: 9744864 [TBL] [Abstract][Full Text] [Related]
15. Activation of the Hog1 MAPK by the Ssk2/Ssk22 MAP3Ks, in the absence of the osmosensors, is not sufficient to trigger osmostress adaptation in Saccharomyces cerevisiae. Vázquez-Ibarra A; Subirana L; Ongay-Larios L; Kawasaki L; Rojas-Ortega E; Rodríguez-González M; de Nadal E; Posas F; Coria R FEBS J; 2018 Mar; 285(6):1079-1096. PubMed ID: 29341399 [TBL] [Abstract][Full Text] [Related]
16. Yeast Hog1 proteins are sequestered in stress granules during high-temperature stress. Shiraishi K; Hioki T; Habata A; Yurimoto H; Sakai Y J Cell Sci; 2018 Jan; 131(1):. PubMed ID: 29183915 [TBL] [Abstract][Full Text] [Related]
17. Hog1: 20 years of discovery and impact. Brewster JL; Gustin MC Sci Signal; 2014 Sep; 7(343):re7. PubMed ID: 25227612 [TBL] [Abstract][Full Text] [Related]
18. Hog1 mitogen-activated protein kinase (MAPK) interrupts signal transduction between the Kss1 MAPK and the Tec1 transcription factor to maintain pathway specificity. Shock TR; Thompson J; Yates JR; Madhani HD Eukaryot Cell; 2009 Apr; 8(4):606-16. PubMed ID: 19218425 [TBL] [Abstract][Full Text] [Related]
19. Proper protein glycosylation promotes mitogen-activated protein kinase signal fidelity. Lien EC; Nagiec MJ; Dohlman HG Biochemistry; 2013 Jan; 52(1):115-24. PubMed ID: 23210626 [TBL] [Abstract][Full Text] [Related]
20. Control of MAPK specificity by feedback phosphorylation of shared adaptor protein Ste50. Hao N; Zeng Y; Elston TC; Dohlman HG J Biol Chem; 2008 Dec; 283(49):33798-802. PubMed ID: 18854322 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]