These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 12007660)

  • 1. The adaptation and resistance of Clostridium aminophilum F to the butyrivibriocin-like substance of Butyrivibrio fibrisolvens JL5 and monensin.
    Rychlik JL; Russell JB
    FEMS Microbiol Lett; 2002 Mar; 209(1):93-8. PubMed ID: 12007660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacteriocin-like activity of Butyrivibrio fibrisolvens JL5 and its effect on other ruminal bacteria and ammonia production.
    Rychlik JL; Russell JB
    Appl Environ Microbiol; 2002 Mar; 68(3):1040-6. PubMed ID: 11872448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The susceptibility of ionophore-resistant Clostridium aminophilum F to other antibiotics.
    Houlihan AJ; Russell JB
    J Antimicrob Chemother; 2003 Oct; 52(4):623-8. PubMed ID: 12951349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decreased competiveness of the foodborne pathogen Campylobacter jejuni during Co-culture with the hyper-ammonia producing anaerobe Clostridium aminophilum.
    Anderson RC; Flythe MD; Krueger NA; Callaway TR; Edrington TS; Harvey RB; Nisbet DJ
    Folia Microbiol (Praha); 2010 Jul; 55(4):309-11. PubMed ID: 20680559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ability of "low G + C gram-positive" ruminal bacteria to resist monensin and counteract potassium depletion.
    Callaway TR; Adams KA; Russell JB
    Curr Microbiol; 1999 Oct; 39(4):226-30. PubMed ID: 10486059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An rRNA approach for assessing the role of obligate amino acid-fermenting bacteria in ruminal amino acid deamination.
    Krause DO; Russell JB
    Appl Environ Microbiol; 1996 Mar; 62(3):815-21. PubMed ID: 8975611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selection of a highly monensin-resistant Prevotella bryantii subpopulation with altered outer membrane characteristics.
    Callaway TR; Russell JB
    Appl Environ Microbiol; 1999 Nov; 65(11):4753-9. PubMed ID: 10543782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible monensin adaptation in Enterococcus faecium, Enterococcus faecalis and Clostridium perfringens of cattle origin: potential impact on human food safety.
    Simjee S; Heffron AL; Pridmore A; Shryock TR
    J Antimicrob Chemother; 2012 Oct; 67(10):2388-95. PubMed ID: 22740589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ability of acidic pH, growth inhibitors, and glucose to increase the proton motive force and energy spilling of amino acid-fermenting Clostridium sporogenes MD1 cultures.
    Flythe MD; Russell JB
    Arch Microbiol; 2005 May; 183(4):236-42. PubMed ID: 15891933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partial inhibition of biohydrogenation of linoleic acid can increase the conjugated linoleic acid production of Butyrivibrio fibrisolvens A38.
    Kim YJ
    J Agric Food Chem; 2003 Jul; 51(15):4258-62. PubMed ID: 12848494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Determination of intracellular concentration of H+, Na+, K+ and ATP in Bacteroides succinogenes adapted to monensin].
    Forano E
    Reprod Nutr Dev; 1990; Suppl 2():199s-200s. PubMed ID: 2169758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variations in the ability of ruminal gram-negative Prevotella species to resist monensin.
    Callaway TR; Russell JB
    Curr Microbiol; 2000 Mar; 40(3):185-9. PubMed ID: 10679051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Butyricin 7423 and the membrane H+ -ATPase of Clostridium pasteurianum.
    Clarke DJ; Kell DB; Morley CD; Morris JG
    Arch Microbiol; 1982 Feb; 131(1):81-6. PubMed ID: 6461308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro effects of a thiopeptide and monensin on ruminal fermentation of soluble carbohydrates.
    Tung RS; Kung L
    J Dairy Sci; 1993 Apr; 76(4):1083-90. PubMed ID: 8486839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial effects of cannabidiol on select agriculturally important Clostridia.
    Lakes JE; Ferrell JL; Berhow MA; Flythe MD
    Anaerobe; 2024 Jun; 87():102843. PubMed ID: 38537865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ability of non-bacteriocin producing Streptococcus bovis strains to bind and transfer bovicin HC5 to other sensitive bacteria.
    Xavier BM; Russell JB
    Anaerobe; 2009 Aug; 15(4):168-72. PubMed ID: 19171197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nisin resistance of Streptococcus bovis.
    Mantovani HC; Russell JB
    Appl Environ Microbiol; 2001 Feb; 67(2):808-13. PubMed ID: 11157247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of nisin on in vitro fermentation, methanogenesis and functional microbial populations of the rumen].
    Shen J; Liu Z; Chen Y; Lv P; Zhu W
    Wei Sheng Wu Xue Bao; 2016 Aug; 56(8):1348-57. PubMed ID: 29738204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Horizontal transfer of erythromycin resistance from Clostridium difficile to Butyrivibrio fibrisolvens.
    Spigaglia P; Barbanti F; Mastrantonio P
    Antimicrob Agents Chemother; 2005 Dec; 49(12):5142-5. PubMed ID: 16304188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monensin-mediated growth inhibition in acute myelogenous leukemia cells via cell cycle arrest and apoptosis.
    Park WH; Lee MS; Park K; Kim ES; Kim BK; Lee YY
    Int J Cancer; 2002 Sep; 101(3):235-42. PubMed ID: 12209973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.