These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 12007662)
1. Use of NIR and pyrolysis-MBMS coupled with multivariate analysis for detecting the chemical changes associated with brown-rot biodegradation of spruce wood. Kelley SS; Jellison J; Goodell B FEMS Microbiol Lett; 2002 Mar; 209(1):107-11. PubMed ID: 12007662 [TBL] [Abstract][Full Text] [Related]
2. Structural change in wood by brown rot fungi and effect on enzymatic hydrolysis. Monrroy M; Ortega I; Ramírez M; Baeza J; Freer J Enzyme Microb Technol; 2011 Oct; 49(5):472-7. PubMed ID: 22112620 [TBL] [Abstract][Full Text] [Related]
3. Fungal hydroquinones contribute to brown rot of wood. Suzuki MR; Hunt CG; Houtman CJ; Dalebroux ZD; Hammel KE Environ Microbiol; 2006 Dec; 8(12):2214-23. PubMed ID: 17107562 [TBL] [Abstract][Full Text] [Related]
4. A potential mechanism for degradation of 4,5-dichloro-2-(n-octyl)-3[2H]-isothiazolone (DCOIT) by brown-rot fungus Gloeophyllum trabeum. Zhu Y; Xue J; Cao J; Xiao H J Hazard Mater; 2017 Sep; 337():72-79. PubMed ID: 28505510 [TBL] [Abstract][Full Text] [Related]
5. Lignocellulose modifications by brown rot fungi and their effects, as pretreatments, on cellulolysis. Schilling JS; Ai J; Blanchette RA; Duncan SM; Filley TR; Tschirner UW Bioresour Technol; 2012 Jul; 116():147-54. PubMed ID: 22609669 [TBL] [Abstract][Full Text] [Related]
6. Localisation and characterisation of incipient brown-rot decay within spruce wood cell walls using FT-IR imaging microscopy. Fackler K; Stevanic JS; Ters T; Hinterstoisser B; Schwanninger M; Salmén L Enzyme Microb Technol; 2010 Nov; 47(6):257-267. PubMed ID: 21052475 [TBL] [Abstract][Full Text] [Related]
7. Culture conditions affecting biodegradation components of the brown-rot fungus Gloeophyllum trabeum. Varela E; Mester T; Tien M Arch Microbiol; 2003 Oct; 180(4):251-6. PubMed ID: 12920506 [TBL] [Abstract][Full Text] [Related]
8. Assessment of saccharification efficacy in the cellulase system of the brown rot fungus Gloeophyllum trabeum. Tewalt J; Schilling J Appl Microbiol Biotechnol; 2010 May; 86(6):1785-93. PubMed ID: 20177887 [TBL] [Abstract][Full Text] [Related]
9. Demethoxylation of [O14CH3]-labelled lignin model compounds by the brown-rot fungi Gloeophyllum trabeum and Poria (Postia) placenta. Niemenmaa O; Uusi-Rauva A; Hatakka A Biodegradation; 2008 Jul; 19(4):555-65. PubMed ID: 17973193 [TBL] [Abstract][Full Text] [Related]
10. Effect of biodegradation on thermogravimetric and chemical characteristics of hardwood and softwood by brown-rot fungus. Gao Z; Fan Q; He Z; Wang Z; Wang X; Sun J Bioresour Technol; 2016 Jul; 211():443-50. PubMed ID: 27035476 [TBL] [Abstract][Full Text] [Related]
11. Differences in crystalline cellulose modification due to degradation by brown and white rot fungi. Hastrup AC; Howell C; Larsen FH; Sathitsuksanoh N; Goodell B; Jellison J Fungal Biol; 2012 Oct; 116(10):1052-63. PubMed ID: 23063184 [TBL] [Abstract][Full Text] [Related]
12. Cu(II)-induced molecular and physiological responses in the brown-rot basidiomycete Polyporales sp. KUC9061. Jang Y; Lee H; Lee SW; Choi YS; Ahn BJ; Kim GH; Kim JJ J Appl Microbiol; 2012 Oct; 113(4):790-7. PubMed ID: 22788907 [TBL] [Abstract][Full Text] [Related]
13. Biomimetic oxidative treatment of spruce wood studied by pyrolysis-molecular beam mass spectrometry coupled with multivariate analysis and 13C-labeled tetramethylammonium hydroxide thermochemolysis: implications for fungal degradation of wood. Arantes V; Qian Y; Kelley SS; Milagres AM; Filley TR; Jellison J; Goodell B J Biol Inorg Chem; 2009 Nov; 14(8):1253-63. PubMed ID: 19621248 [TBL] [Abstract][Full Text] [Related]
14. Carbon-thirteen cross-polarization magic angle spinning nuclear magnetic resonance and Fourier transform infrared studies of thermally modified wood exposed to brown and soft rot fungi. Sivonen H; Nuopponen M; Maunu SL; Sundholm F; Vuorinen T Appl Spectrosc; 2003 Mar; 57(3):266-73. PubMed ID: 14658617 [TBL] [Abstract][Full Text] [Related]
15. Genomewide analysis of polysaccharides degrading enzymes in 11 white- and brown-rot Polyporales provides insight into mechanisms of wood decay. Hori C; Gaskell J; Igarashi K; Samejima M; Hibbett D; Henrissat B; Cullen D Mycologia; 2013; 105(6):1412-27. PubMed ID: 23935027 [TBL] [Abstract][Full Text] [Related]
16. Influence of Hyphal Inoculum potential on the Competitive Success of Fungi Colonizing Wood. Song Z; Vail A; Sadowsky MJ; Schilling JS Microb Ecol; 2015 May; 69(4):758-67. PubMed ID: 25750000 [TBL] [Abstract][Full Text] [Related]
17. Evidence for cleavage of lignin by a brown rot basidiomycete. Yelle DJ; Ralph J; Lu F; Hammel KE Environ Microbiol; 2008 Jul; 10(7):1844-9. PubMed ID: 18363712 [TBL] [Abstract][Full Text] [Related]
18. [Discrimination of wood biological decay by soft independent modeling of class analogy (SIMCA) pattern recognition based on principal component analysis]. Yang Z; Jiang ZH; Fei BH; Qin DC Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Apr; 27(4):686-90. PubMed ID: 17608176 [TBL] [Abstract][Full Text] [Related]
19. Metal accumulation without enhanced oxalate secretion in wood degraded by brown rot fungi. Schilling JS; Jellison J Appl Environ Microbiol; 2006 Aug; 72(8):5662-5. PubMed ID: 16885326 [TBL] [Abstract][Full Text] [Related]
20. Qualitative and quantitative changes of beech wood degraded by wood-rotting basidiomycetes monitored by Fourier transform infrared spectroscopic methods and multivariate data analysis. Fackler K; Schwanninger M; Gradinger C; Hinterstoisser B; Messner K FEMS Microbiol Lett; 2007 Jun; 271(2):162-9. PubMed ID: 17466029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]