These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 12007987)
1. Serial cerebrospinal fluid sampling in a rat model to study drug uptake from the nasal cavity. van den Berg MP; Romeijn SG; Verhoef JC; Merkus FW J Neurosci Methods; 2002 Apr; 116(1):99-107. PubMed ID: 12007987 [TBL] [Abstract][Full Text] [Related]
2. Intranasal Medication Administration Using a Squeeze Bottle Atomizer Results in Overdosing if Deployed in Supine Patients. Goldhammer JE; Dobish MA; McAnulty JT; Smaka TJ; Epstein RH Anesth Analg; 2017 Aug; 125(2):453-457. PubMed ID: 27828797 [TBL] [Abstract][Full Text] [Related]
3. Direct drug transport from the rat nasal cavity to the cerebrospinal fluid: the relation to the dissociation of the drug. Sakane T; Akizuki M; Yamashita S; Sezaki H; Nadai T J Pharm Pharmacol; 1994 May; 46(5):378-9. PubMed ID: 8083811 [TBL] [Abstract][Full Text] [Related]
4. Technique for repeated collection of cerebrospinal fluid from cisterna magna of anesthetized strain 13 guinea pigs. Liu CT; Guo ZM Proc Soc Exp Biol Med; 1991 Sep; 197(4):400-3. PubMed ID: 1871150 [TBL] [Abstract][Full Text] [Related]
5. Distribution of antihistamines into the CSF following intranasal delivery. Chou KJ; Donovan MD Biopharm Drug Dispos; 1997 May; 18(4):335-46. PubMed ID: 9158881 [TBL] [Abstract][Full Text] [Related]
6. Transcutaneous cisternal puncture for sampling of cerebrospinal fluid in awake rat. Takasugi Y; Shirai T; Futagawa K; Koga Y; Egawa K; Watanabe S; Umeda T Exp Anim; 2005 Apr; 54(2):193-6. PubMed ID: 15897631 [TBL] [Abstract][Full Text] [Related]
7. Spatial characteristics of cisterna magna in rats and novel technique for puncture with a stereotactic manipulator. Lebedev SV; Blinov DV; Petrov SV Bull Exp Biol Med; 2004 Jun; 137(6):635-8. PubMed ID: 15455105 [TBL] [Abstract][Full Text] [Related]
8. Direct drug transport from the rat nasal cavity to the cerebrospinal fluid: the relation to the molecular weight of drugs. Sakane T; Akizuki M; Taki Y; Yamashita S; Sezaki H; Nadai T J Pharm Pharmacol; 1995 May; 47(5):379-81. PubMed ID: 7494186 [TBL] [Abstract][Full Text] [Related]
9. Nasal absorption of (S)-UH-301 and its transport into the cerebrospinal fluid of rats. Dahlin M; Björk E Int J Pharm; 2000 Feb; 195(1-2):197-205. PubMed ID: 10675697 [TBL] [Abstract][Full Text] [Related]
10. Transport of cephalexin to the cerebrospinal fluid directly from the nasal cavity. Sakane T; Akizuki M; Yoshida M; Yamashita S; Nadai T; Hashida M; Sezaki H J Pharm Pharmacol; 1991 Jun; 43(6):449-51. PubMed ID: 1681064 [TBL] [Abstract][Full Text] [Related]
11. An improved method of transcutaneous cisterna magna puncture for cerebrospinal fluid sampling in rats. Mahat MY; Fakrudeen Ali Ahamed N; Chandrasekaran S; Rajagopal S; Narayanan S; Surendran N J Neurosci Methods; 2012 Nov; 211(2):272-9. PubMed ID: 23000275 [TBL] [Abstract][Full Text] [Related]
12. Transnasal delivery of 5-fluorouracil to the brain in the rat. Sakane T; Yamashita S; Yata N; Sezaki H J Drug Target; 1999; 7(3):233-40. PubMed ID: 10680979 [TBL] [Abstract][Full Text] [Related]
13. The transport of a drug to the cerebrospinal fluid directly from the nasal cavity: the relation to the lipophilicity of the drug. Sakane T; Akizuki M; Yamashita S; Nadai T; Hashida M; Sezaki H Chem Pharm Bull (Tokyo); 1991 Sep; 39(9):2456-8. PubMed ID: 1804561 [TBL] [Abstract][Full Text] [Related]
14. Estimation of the unbound brain concentration of P-glycoprotein substrates or nonsubstrates by a serial cerebrospinal fluid sampling technique in rats. Mariappan TT; Kurawattimath V; Gautam SS; Kulkarni CP; Kallem R; Taskar KS; Marathe PH; Mandlekar S Mol Pharm; 2014 Feb; 11(2):477-85. PubMed ID: 24380373 [TBL] [Abstract][Full Text] [Related]
15. [Preparation of huperzine A nasal in situ gel and evaluation of its brain targeting following intranasal administration]. Tao T; Zhao Y; Yue P; Dong WX; Chen QH Yao Xue Xue Bao; 2006 Nov; 41(11):1104-10. PubMed ID: 17262956 [TBL] [Abstract][Full Text] [Related]
16. Hydroxocobalamin uptake into the cerebrospinal fluid after nasal and intravenous delivery in rats and humans. Van den Berg MP; Merkus P; Romeijn SG; Verhoef JC; Merkus FW J Drug Target; 2003 Jul; 11(6):325-31. PubMed ID: 14668053 [TBL] [Abstract][Full Text] [Related]
17. An applicable method of drawing cerebrospinal fluid in rats. Li Y; Zhang B; Liu XW; Liu M; Huang SM J Chem Neuroanat; 2016 Jul; 74():18-20. PubMed ID: 26907574 [TBL] [Abstract][Full Text] [Related]
18. Simple methods for cerebrospinal fluid collection in fetal, neonatal, and adult rat. Tavakkoli Z; Salehi MS; Jameie F; Rahimi M; Koohpeyma F; Dianatpour M; Miyan JA; Pandamooz S J Neurosci Methods; 2023 Nov; 399():109971. PubMed ID: 37722626 [TBL] [Abstract][Full Text] [Related]
19. Cerebrospinal fluid collection in laboratory mice: Literature review and modified cisternal puncture method. Šakić B J Neurosci Methods; 2019 Jan; 311():402-407. PubMed ID: 30273638 [TBL] [Abstract][Full Text] [Related]
20. A new approach for multiple sampling of cisternal cerebrospinal fluid in rodents with minimal trauma and inflammation. Huang YL; Säljö A; Suneson A; Hansson HA J Neurosci Methods; 1995 Dec; 63(1-2):13-22. PubMed ID: 8788043 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]