These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 12008054)

  • 1. A comparative study of artificial membrane permeability assay for high throughput profiling of drug absorption potential.
    Zhu C; Jiang L; Chen TM; Hwang KK
    Eur J Med Chem; 2002 May; 37(5):399-407. PubMed ID: 12008054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ADME evaluation in drug discovery. 5. Correlation of Caco-2 permeation with simple molecular properties.
    Hou TJ; Zhang W; Xia K; Qiao XB; Xu XJ
    J Chem Inf Comput Sci; 2004; 44(5):1585-600. PubMed ID: 15446816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative QSAR studies on PAMPA/modified PAMPA for high throughput profiling of drug absorption potential with respect to Caco-2 cells and human intestinal absorption.
    Verma RP; Hansch C; Selassie CD
    J Comput Aided Mol Des; 2007; 21(1-3):3-22. PubMed ID: 17253116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling Caco-2 permeability of drugs using immobilized artificial membrane chromatography and physicochemical descriptors.
    Chan EC; Tan WL; Ho PC; Fang LJ
    J Chromatogr A; 2005 Apr; 1072(2):159-68. PubMed ID: 15887485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationships between structure and high-throughput screening permeability of diverse drugs with artificial membranes: application to prediction of Caco-2 cell permeability.
    Fujikawa M; Ano R; Nakao K; Shimizu R; Akamatsu M
    Bioorg Med Chem; 2005 Aug; 13(15):4721-32. PubMed ID: 15936203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationships between structure and high-throughput screening permeability of peptide derivatives and related compounds with artificial membranes: application to prediction of Caco-2 cell permeability.
    Ano R; Kimura Y; Shima M; Matsuno R; Ueno T; Akamatsu M
    Bioorg Med Chem; 2004 Jan; 12(1):257-64. PubMed ID: 14697791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A corneal-PAMPA-based in silico model for predicting corneal permeability.
    Vincze A; Dargó G; Rácz A; Balogh GT
    J Pharm Biomed Anal; 2021 Sep; 203():114218. PubMed ID: 34166924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QSAR study on permeability of hydrophobic compounds with artificial membranes.
    Fujikawa M; Nakao K; Shimizu R; Akamatsu M
    Bioorg Med Chem; 2007 Jun; 15(11):3756-67. PubMed ID: 17418579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Use of Rule-Based and QSPR Approaches in ADME Profiling: A Case Study on Caco-2 Permeability.
    Pham-The H; González-Álvarez I; Bermejo M; Garrigues T; Le-Thi-Thu H; Cabrera-Pérez MÁ
    Mol Inform; 2013 Jun; 32(5-6):459-79. PubMed ID: 27481666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parallel artificial membrane permeability assay (PAMPA) combined with a 10-day multiscreen Caco-2 cell culture as a tool for assessing new drug candidates.
    Masungi C; Mensch J; Van Dijck A; Borremans C; Willems B; Mackie C; Noppe M; Brewster ME
    Pharmazie; 2008 Mar; 63(3):194-9. PubMed ID: 18444507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clearance-dependent underprediction of in vivo intrinsic clearance from human hepatocytes: comparison with permeabilities from artificial membrane (PAMPA) assay, in silico and caco-2 assay, for 65 drugs.
    Hallifax D; Turlizzi E; Zanelli U; Houston JB
    Eur J Pharm Sci; 2012 Apr; 45(5):570-4. PubMed ID: 22214813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QSAR application for the prediction of compound permeability with in silico descriptors in practical use.
    Nakao K; Fujikawa M; Shimizu R; Akamatsu M
    J Comput Aided Mol Des; 2009 May; 23(5):309-19. PubMed ID: 19241121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and evaluation of an in vitro method for prediction of human drug absorption II. Demonstration of the method suitability.
    Corti G; Maestrelli F; Cirri M; Zerrouk N; Mura P
    Eur J Pharm Sci; 2006 Mar; 27(4):354-62. PubMed ID: 16364612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new in vitro system for evaluation of passive intestinal drug absorption: establishment of a double artificial membrane permeation assay.
    Kataoka M; Tsuneishi S; Maeda Y; Masaoka Y; Sakuma S; Yamashita S
    Eur J Pharm Biopharm; 2014 Nov; 88(3):840-6. PubMed ID: 25304077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined application of parallel artificial membrane permeability assay and Caco-2 permeability assays in drug discovery.
    Kerns EH; Di L; Petusky S; Farris M; Ley R; Jupp P
    J Pharm Sci; 2004 Jun; 93(6):1440-53. PubMed ID: 15124203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes.
    Kansy M; Senner F; Gubernator K
    J Med Chem; 1998 Mar; 41(7):1007-10. PubMed ID: 9544199
    [No Abstract]   [Full Text] [Related]  

  • 17. The "latent membrane permeability" concept: QSPR analysis of inter/intralaboratory variable Caco-2 permeability.
    Yamashita F; Fujiwara S; Hashida M
    J Chem Inf Comput Sci; 2002; 42(2):408-13. PubMed ID: 11911711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ADME evaluation in drug discovery. 3. Modeling blood-brain barrier partitioning using simple molecular descriptors.
    Hou TJ; Xu XJ
    J Chem Inf Comput Sci; 2003; 43(6):2137-52. PubMed ID: 14632466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Permeability diagnosis model in drug discovery: a diagnostic tool to identify the most influencing properties for gastrointestinal permeability.
    Wang J; Skolnik S
    Curr Top Med Chem; 2013; 13(11):1308-16. PubMed ID: 23675937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [High throughput screening of pharmacokinetics and metabolism in drug discovery (III)--investigation on in- silico model for membrane permeability and CYP1A2 inhibition].
    Komura H; Shigemoto Y; Kawahara I; Matsuda K; Ano R; Murayama Y; Moriwaki T; Yoshida NH
    Yakugaku Zasshi; 2005 Jan; 125(1):141-7. PubMed ID: 15635285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.