These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 12008704)

  • 1. Prophylactic [correction of prophylatic] effects of intermittent acceleration against physiological deconditioning in simulated weightlessness.
    Shulzhenko EB; Vil-Vilyams IF; Aleksandrova EA; Gogolev KI
    Life Sci Space Res; 1979; 17():187-92. PubMed ID: 12008704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prevention of human deconditioning during prolonged immersion in water.
    Shulzhenko EB; Vil-Vilyams IF; Grigoryev AI; Gogolev KI; Khudyakova MA
    Life Sci Space Res; 1977; 15():219-24. PubMed ID: 11962494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Usefulness of daily +2Gz load as a countermeasure against physiological problems during weightlessness.
    Iwasaki KI; Sasaki T; Hirayanagi K; Yajima K
    Acta Astronaut; 2001; 49(3-10):227-35. PubMed ID: 11669112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deconditioning during prolonged immersion and possible countermeasures.
    Shulzhenko EB; Vil-Vilyams IF; Khudyakova MA; Grigoryev AI
    Life Sci Space Res; 1976; 14():289-94. PubMed ID: 11977283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human tolerance to acceleration after exposure to weightlessness.
    Kotovskaya AR
    Life Sci Space Res; 1976; 14():129-35. PubMed ID: 11977270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effectiveness of centrifuge-induced artificial gravity with ergometric exercise as a countermeasure during simulated microgravity exposure in humans.
    Iwase S
    Acta Astronaut; 2005; 57(2-8):75-80. PubMed ID: 16010754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Principle approaches to selection of the short-arm centrifuge regimens for extended space flight.
    Vil-Viliams IF
    Acta Astronaut; 1994 Jul; 33():221-9. PubMed ID: 11539526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human adaptation to simulated gravitational fields.
    Shulzhenko EB; Vil-Vilyams IF; Panfilov VE
    Adv Space Res; 1981; 1(14):131-4. PubMed ID: 11541701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of daily 2-Gz load on human cardiovascular function during weightlessness simulation using 4-day head-down bed rest.
    Sasaki T; Iwasaki KI; Hirayanagi K; Yamaguchi N; Miyamoto A; Yajima K
    Uchu Koku Kankyo Igaku; 1999 Sep; 36(3):113-23. PubMed ID: 11543318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human adaptation to simulated gravitational fields.
    Shulzhenko EB; Vil-Vilyams IF; Panfilov VE
    Acta Astronaut; 1982 Mar; 9(3):173-4. PubMed ID: 11541687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The progress in research on changes of central venous pressure under simulated weightlessness and microgravity].
    Wang DS; Sun L; Xiang QL; Ren W
    Space Med Med Eng (Beijing); 1999 Dec; 12(6):459-63. PubMed ID: 12434816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of the consequences of fluid and electrolyte shifts in weightlessness.
    Leach CS
    Acta Astronaut; 1979 Sep; 6(9):1123-35. PubMed ID: 11883481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of centrifuge-induced artificial gravity and ergometric exercise on cardiovascular deconditioning, myatrophy, and osteoporosis induced by a -6 degrees head-down bedrest.
    Iwase S; Takada H; Watanabe Y; Ishida K; Akima H; Katayama K; Iwase M; Hirayanagi K; Shiozawa T; Hamaoka T; Masuo Y; Custaud MA
    J Gravit Physiol; 2004 Jul; 11(2):P243-4. PubMed ID: 16240530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Centrifugation as a countermeasure during bed rest and dry immersion: What has been learned?
    Clément G; Paloski WH; Rittweger J; Linnarsson D; Bareille MP; Mulder E; Wuyts FL; Zange J
    J Musculoskelet Neuronal Interact; 2016 Jun; 16(2):84-91. PubMed ID: 27282452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. +Gx tolerance by females following long-duration simulated and spaceflight microgravity.
    Koloteva MI; Lukianiuk VY; Vil-Viliams IF; Kotovskaya AR
    J Gravit Physiol; 2004 Jul; 11(2):P101-2. PubMed ID: 16235434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cardiovascular response to the AGS.
    Cardús D; McTaggart WG
    Physiologist; 1993 Feb; 36(1 Suppl):S155-7. PubMed ID: 11538518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Centrifugation as a countermeasure during actual and simulated microgravity: a review.
    Clément G; Pavy-Le Traon A
    Eur J Appl Physiol; 2004 Jul; 92(3):235-48. PubMed ID: 15156322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Weightlessness and heat stress on astronauts].
    Yu XJ; Yang TD; Pang C
    Space Med Med Eng (Beijing); 2000 Feb; 13(1):70-3. PubMed ID: 12214617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomedical support of man in space.
    Pendergast DR; Olszowka AJ; Rokitka MA; Farhi LE
    Acta Astronaut; 1988; 17(2):187-93. PubMed ID: 11537095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concept of new tool to simulate human physiological reactions in microgravity.
    Kondrachuk AV; Gulyar SA
    J Gravit Physiol; 1995; 2(1):P109-10. PubMed ID: 11538886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.