BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 12009123)

  • 1. The effect of different surfaces on biomechanical loading of shoulder and lumbar spine during pushing and pulling of two-wheeled containers.
    Laursen B; Schibye B
    Appl Ergon; 2002 Mar; 33(2):167-74. PubMed ID: 12009123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical load on the low back and shoulders during pushing and pulling of two-wheeled waste containers compared with lifting and carrying of bags and bins.
    Schibye B; Søgaard K; Martinsen D; Klausen K
    Clin Biomech (Bristol, Avon); 2001 Aug; 16(7):549-59. PubMed ID: 11470296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Force direction and physical load in dynamic pushing and pulling.
    de Looze MP; van Greuningen K; Rebel J; Kingma I; Kuijer PP
    Ergonomics; 2000 Mar; 43(3):377-90. PubMed ID: 10755660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wheelchair pushing and turning: lumbar spine and shoulder loads and recommended limits.
    Weston EB; Khan SN; Marras WS
    Ergonomics; 2017 Dec; 60(12):1754-1765. PubMed ID: 28627334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanically determined hand force limits protecting the low back during occupational pushing and pulling tasks.
    Weston EB; Aurand A; Dufour JS; Knapik GG; Marras WS
    Ergonomics; 2018 Jun; 61(6):853-865. PubMed ID: 29241415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical loading of the low back and shoulders during pushing and pulling activities.
    Hoozemans MJ; Kuijer PP; Kingma I; van Dieën JH; de Vries WH; van der Woude LH; Veeger DJ; van der Beek AJ; Frings-Dresen MH
    Ergonomics; 2004 Jan; 47(1):1-18. PubMed ID: 14660215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of a redesigned two-wheeled container for refuse collecting on mechanical loading of low back and shoulders.
    Kuijer PP; Hoozemans MJ; Kingma I; Van Dieën JH; De Vries WH; Veeger DJ; Van der Beek AJ; Visser B; Frings-Dresen MH
    Ergonomics; 2003 May; 46(6):543-60. PubMed ID: 12745687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. L4-L5 compression and anterior/posterior joint shear forces in cabin attendants during the initial push/pull actions of airplane meal carts.
    Sandfeld J; Rosgaard C; Jensen BR
    Appl Ergon; 2014 Jul; 45(4):1067-75. PubMed ID: 24552608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spine loading at different lumbar levels during pushing and pulling.
    Knapik GG; Marras WS
    Ergonomics; 2009 Jan; 52(1):60-70. PubMed ID: 19308819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical loading on the low back in three methods of refuse collecting.
    de Looze MP; Stassen AR; Markslag AM; Borst MJ; Wooning MM; Toussaint HM
    Ergonomics; 1995 Oct; 38(10):1993-2006. PubMed ID: 7588581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loading along the lumbar spine as influence by speed, control, load magnitude, and handle height during pushing.
    Marras WS; Knapik GG; Ferguson S
    Clin Biomech (Bristol, Avon); 2009 Feb; 24(2):155-63. PubMed ID: 19111950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical loading of the shoulder complex and lumbosacral joints during dynamic cart pushing task.
    Nimbarte AD; Sun Y; Jaridi M; Hsiao H
    Appl Ergon; 2013 Sep; 44(5):841-9. PubMed ID: 23566675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Practice-related changes in lumbar loading during rapid voluntary pulls made while standing.
    Chang AH; Lee WA; Patton JL
    Clin Biomech (Bristol, Avon); 2000 Dec; 15(10):726-34. PubMed ID: 11050354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trunk response and stability in standing under sagittal-symmetric pull-push forces at different orientations, elevations and magnitudes.
    El Ouaaid Z; Shirazi-Adl A; Plamondon A
    J Biomech; 2018 Mar; 70():166-174. PubMed ID: 29089111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of pushing exercises: muscle activity and spine load while contrasting techniques on stable surfaces with a labile suspension strap training system.
    McGill SM; Cannon J; Andersen JT
    J Strength Cond Res; 2014 Jan; 28(1):105-16. PubMed ID: 24088865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of load mass and position on the dynamic loading of the knees, shoulders and lumbar spine during lifting: a musculoskeletal modelling approach.
    Skals S; Bláfoss R; de Zee M; Andersen LL; Andersen MS
    Appl Ergon; 2021 Oct; 96():103491. PubMed ID: 34126573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trunk muscle activation and associated lumbar spine joint shear forces under different levels of external forward force applied to the trunk.
    Kingma I; Staudenmann D; van Dieën JH
    J Electromyogr Kinesiol; 2007 Feb; 17(1):14-24. PubMed ID: 16531071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of lumbar spine and muscle loading between male and female workers during box transfers.
    Gagnon D; Plamondon A; Larivière C
    J Biomech; 2018 Nov; 81():76-85. PubMed ID: 30286979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of action forces and posture to determine the lumbar load of healthcare workers during care activities with patient transfers.
    Theilmeier A; Jordan C; Luttmann A; Jäger M
    Ann Occup Hyg; 2010 Nov; 54(8):923-33. PubMed ID: 20851849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A combined passive and active musculoskeletal model study to estimate L4-L5 load sharing.
    Azari F; Arjmand N; Shirazi-Adl A; Rahimi-Moghaddam T
    J Biomech; 2018 Mar; 70():157-165. PubMed ID: 28527584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.