These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 12009161)

  • 1. Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations.
    Rohrbach A; Stelzer EH
    Appl Opt; 2002 May; 41(13):2494-507. PubMed ID: 12009161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical trapping of dielectric particles in arbitrary fields.
    Rohrbach A; Stelzer EH
    J Opt Soc Am A Opt Image Sci Vis; 2001 Apr; 18(4):839-53. PubMed ID: 11318334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime.
    Ashkin A
    Methods Cell Biol; 1998; 55():1-27. PubMed ID: 9352508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comment on "Trapping force, force constant, and potential depths for dielectric spheres in the presence of spherical aberrations".
    Chaumet PC
    Appl Opt; 2004 Mar; 43(9):1825-6; discussion 1827-9. PubMed ID: 15065711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical trapping map of dielectric spheres.
    Muradoglu M; Ng TW
    Appl Opt; 2013 May; 52(15):3500-9. PubMed ID: 23736236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps.
    Schut TC; Hesselink G; de Grooth BG; Greve J
    Cytometry; 1991; 12(6):479-85. PubMed ID: 1764972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of optical trapping forces by use of the two-photon-excited fluorescence of microspheres.
    Kachynski AV; Kuzmin AN; Pudavar HE; Kaputa DS; Cartwright AN; Prasad PN
    Opt Lett; 2003 Dec; 28(23):2288-90. PubMed ID: 14680158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of forces and displacements along the axial direction in an optical trap.
    Deufel C; Wang MD
    Biophys J; 2006 Jan; 90(2):657-67. PubMed ID: 16258039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Axial optical trapping forces on two particles trapped simultaneously by optical tweezers.
    Xu S; Li Y; Lou L
    Appl Opt; 2005 May; 44(13):2667-72. PubMed ID: 15881076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of trapping force on metallic mie particles.
    Ke PC; Gu M
    Appl Opt; 1999 Jan; 38(1):160-7. PubMed ID: 18305599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient in-depth trapping with an oil-immersion objective lens.
    Reihani SN; Charsooghi MA; Khalesifard HR; Golestanian R
    Opt Lett; 2006 Mar; 31(6):766-8. PubMed ID: 16544617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical trapping forces for colloids at the oil-water interface.
    Park BJ; Furst EM
    Langmuir; 2008 Dec; 24(23):13383-92. PubMed ID: 18980357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime.
    Ashkin A
    Biophys J; 1992 Feb; 61(2):569-82. PubMed ID: 19431818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric.
    Neves AA; Fontes A; Pozzo Lde Y; de Thomaz AA; Chillce E; Rodriguez E; Barbosa LC; Cesar CL
    Opt Express; 2006 Dec; 14(26):13101-6. PubMed ID: 19532206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inversion of gradient forces for high refractive index particles in optical trapping.
    Ambrosio LA; Hernández-Figueroa HE
    Opt Express; 2010 Mar; 18(6):5802-8. PubMed ID: 20389597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gradient and scattering forces of anti-reflection-coated spheres in an aplanatic beam.
    Wang N; Li X; Chen J; Lin Z; Ng J
    Sci Rep; 2018 Nov; 8(1):17423. PubMed ID: 30479351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave.
    Zemánek P; Jonás A; Liska M
    J Opt Soc Am A Opt Image Sci Vis; 2002 May; 19(5):1025-34. PubMed ID: 11999957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical trapping near resonance absorption.
    Agayan RR; Gittes F; Kopelman R; Schmidt CF
    Appl Opt; 2002 Apr; 41(12):2318-27. PubMed ID: 12003226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of deformable mirrors for spherical aberration correction in optical sectioning microscopy.
    Shaw M; Hall S; Knox S; Stevens R; Paterson C
    Opt Express; 2010 Mar; 18(7):6900-13. PubMed ID: 20389710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.