These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 12009426)
1. Rate of formation of AGEs during ascorbate glycation and during aging in human lens tissue. Cheng R; Lin B; Ortwerth BJ Biochim Biophys Acta; 2002 May; 1587(1):65-74. PubMed ID: 12009426 [TBL] [Abstract][Full Text] [Related]
2. Similarity of the yellow chromophores isolated from human cataracts with those from ascorbic acid-modified calf lens proteins: evidence for ascorbic acid glycation during cataract formation. Cheng R; Lin B; Lee KW; Ortwerth BJ Biochim Biophys Acta; 2001 Jul; 1537(1):14-26. PubMed ID: 11476959 [TBL] [Abstract][Full Text] [Related]
3. Separation of the yellow chromophores in individual brunescent cataracts. Cheng R; Lin B; Ortwerth BJ Exp Eye Res; 2003 Sep; 77(3):313-25. PubMed ID: 12907164 [TBL] [Abstract][Full Text] [Related]
4. The effect of UVA light on the anaerobic oxidation of ascorbic acid and the glycation of lens proteins. Ortwerth BJ; Chemoganskiy V; Mossine VV; Olesen PR Invest Ophthalmol Vis Sci; 2003 Jul; 44(7):3094-102. PubMed ID: 12824256 [TBL] [Abstract][Full Text] [Related]
5. LC-MS display of the total modified amino acids in cataract lens proteins and in lens proteins glycated by ascorbic acid in vitro. Cheng R; Feng Q; Ortwerth BJ Biochim Biophys Acta; 2006 May; 1762(5):533-43. PubMed ID: 16540295 [TBL] [Abstract][Full Text] [Related]
6. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products. Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665 [TBL] [Abstract][Full Text] [Related]
7. Application of solid-phase extraction for the concentration of chromophores, fluorophores, and photosensitizers from lens protein digests. Argirov OK; Hubenova Y; Argirova MD J Sep Sci; 2014 Nov; 37(21):3106-9. PubMed ID: 25143146 [TBL] [Abstract][Full Text] [Related]
8. Glycation by ascorbic acid oxidation products leads to the aggregation of lens proteins. Linetsky M; Shipova E; Cheng R; Ortwerth BJ Biochim Biophys Acta; 2008 Jan; 1782(1):22-34. PubMed ID: 18023423 [TBL] [Abstract][Full Text] [Related]
9. Studies on singlet oxygen formation and UVA light-mediated photobleaching of the yellow chromophores in human lenses. Ortwerth BJ; Chemoganskiy V; Olesen PR Exp Eye Res; 2002 Feb; 74(2):217-29. PubMed ID: 11950232 [TBL] [Abstract][Full Text] [Related]
10. Tryptophan metabolites from young human lenses and the photooxidation of ascorbic acid by UVA light. Ortwerth BJ; Bhattacharyya J; Shipova E Invest Ophthalmol Vis Sci; 2009 Jul; 50(7):3311-9. PubMed ID: 19264899 [TBL] [Abstract][Full Text] [Related]
11. Immunochemical detection of oxalate monoalkylamide, an ascorbate-derived Maillard reaction product in the human lens. Nagaraj RH; Shamsi FA; Huber B; Pischetsrieder M FEBS Lett; 1999 Jun; 453(3):327-30. PubMed ID: 10405169 [TBL] [Abstract][Full Text] [Related]
12. Chromatographic comparison of the UVA sensitizers present in brunescent cataracts and in calf lens proteins ascorbylated in vitro. Lee KW; Meyer N; Ortwerth BJ Exp Eye Res; 1999 Oct; 69(4):375-84. PubMed ID: 10504271 [TBL] [Abstract][Full Text] [Related]
13. Glycation of human lens proteins: preferential glycation of alpha A subunits. Swamy MS; Abraham A; Abraham EC Exp Eye Res; 1992 Mar; 54(3):337-45. PubMed ID: 1521566 [TBL] [Abstract][Full Text] [Related]
14. UVA light-excited kynurenines oxidize ascorbate and modify lens proteins through the formation of advanced glycation end products: implications for human lens aging and cataract formation. Linetsky M; Raghavan CT; Johar K; Fan X; Monnier VM; Vasavada AR; Nagaraj RH J Biol Chem; 2014 Jun; 289(24):17111-23. PubMed ID: 24798334 [TBL] [Abstract][Full Text] [Related]
15. Isolation and characterization of a blue fluorophore from human eye lens crystallins: in vitro formation from Maillard reaction with ascorbate and ribose. Nagaraj RH; Monnier VM Biochim Biophys Acta; 1992 Mar; 1116(1):34-42. PubMed ID: 1540622 [TBL] [Abstract][Full Text] [Related]
16. Spontaneous generation of superoxide anion by human lens proteins and by calf lens proteins ascorbylated in vitro. Linetsky M; James HL; Ortwerth BJ Exp Eye Res; 1999 Aug; 69(2):239-48. PubMed ID: 10433859 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of crystallin ascorbylation by nucleophilic compounds in the hSVCT2 mouse model of lenticular aging. Fan X; Monnier VM Invest Ophthalmol Vis Sci; 2008 Nov; 49(11):4945-52. PubMed ID: 18421088 [TBL] [Abstract][Full Text] [Related]
18. Fluorescence and immunochemical studies of advanced glycation-related lens pigments. Das BK; Sun TX; Akhtar NJ; Chylack LT; Liang JJ Invest Ophthalmol Vis Sci; 1998 Oct; 39(11):2058-66. PubMed ID: 9761284 [TBL] [Abstract][Full Text] [Related]
19. Crystallin composition of human cataractous lens may be modulated by protein glycation. Ramalho J; Marques C; Pereira P; Mota MC Graefes Arch Clin Exp Ophthalmol; 1996 Aug; 234 Suppl 1():S232-8. PubMed ID: 8871180 [TBL] [Abstract][Full Text] [Related]
20. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses. Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]