These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 12009561)

  • 1. Human perceptual learning in the peripheral visual field: sensory thresholds and neurophysiological correlates.
    Ludwig I; Skrandies W
    Biol Psychol; 2002 May; 59(3):187-206. PubMed ID: 12009561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ERP topography and human perceptual learning in the peripheral visual field.
    Shoji H; Skrandies W
    Int J Psychophysiol; 2006 Aug; 61(2):179-87. PubMed ID: 16356572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perceptual learning: psychophysical thresholds and electrical brain topography.
    Skrandies W; Jedynak A; Fahle M
    Int J Psychophysiol; 2001 Jun; 41(2):119-29. PubMed ID: 11325457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implicit learning modulates selective attention at sensory levels of perceptual processing.
    Couperus JW
    Atten Percept Psychophys; 2009 Feb; 71(2):342-51. PubMed ID: 19304623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensory thresholds and neurophysiological correlates of human perceptual learning.
    Skrandies W; Lang G; Jedynak A
    Spat Vis; 1996; 9(4):475-89. PubMed ID: 8774090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophysiological correlates of lateral interactions in human visual cortex.
    Khoe W; Freeman E; Woldorff MG; Mangun GR
    Vision Res; 2004; 44(14):1659-73. PubMed ID: 15136002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic coil suppression of visual perception at an extracalcarine site.
    Epstein CM; Verson R; Zangaladze A
    J Clin Neurophysiol; 1996 May; 13(3):247-52. PubMed ID: 8714346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Tölz Temporal Topography Study: mapping the visual field across the life span. Part I: the topography of light detection and temporal-information processing.
    Poggel DA; Treutwein B; Calmanti C; Strasburger H
    Atten Percept Psychophys; 2012 Aug; 74(6):1114-32. PubMed ID: 22484795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early-vision brain responses which predict human visual segmentation and learning.
    Censor N; Bonneh Y; Arieli A; Sagi D
    J Vis; 2009 Apr; 9(4):12.1-9. PubMed ID: 19757921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Right to left hemispheric shift in occipital electroencephalographic responses to repeated Kimura figures.
    Persinger MA; LaLonde CA
    Percept Mot Skills; 2000 Aug; 91(1):273-8. PubMed ID: 11011898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-till-breakdown and scalp electrical potential maps of long-range apparent motion.
    Selmes CM; Fulham WR; Finlay DC; Chorlton MC; Manning ML
    Percept Psychophys; 1997 May; 59(4):489-99. PubMed ID: 9158324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of perceptual learning on primary visual cortex activity in humans.
    Pourtois G; Rauss KS; Vuilleumier P; Schwartz S
    Vision Res; 2008 Jan; 48(1):55-62. PubMed ID: 18082238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulations of sensory-evoked brain potentials indicate changes in perceptual processing during visual-spatial priming.
    Mangun GR; Hillyard SA
    J Exp Psychol Hum Percept Perform; 1991 Nov; 17(4):1057-74. PubMed ID: 1837297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of repetition lag on electrophysiological and haemodynamic correlates of visual object priming.
    Henson RN; Rylands A; Ross E; Vuilleumeir P; Rugg MD
    Neuroimage; 2004 Apr; 21(4):1674-89. PubMed ID: 15050590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection duration thresholds and evoked potential measures of stereosensitivity.
    Manning ML; Finlay DC; Dewis SA; Dunlop DB
    Doc Ophthalmol; 1992; 79(2):161-75. PubMed ID: 1591970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Tölz Temporal Topography Study: mapping the visual field across the life span. Part II: cognitive factors shaping visual field maps.
    Poggel DA; Treutwein B; Calmanti C; Strasburger H
    Atten Percept Psychophys; 2012 Aug; 74(6):1133-44. PubMed ID: 22528607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gamma-band activity over early sensory areas predicts detection of changes in audiovisual speech stimuli.
    Kaiser J; Hertrich I; Ackermann H; Lutzenberger W
    Neuroimage; 2006 May; 30(4):1376-82. PubMed ID: 16364660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial property of motion visual evoked potentials.
    Takao M; Miyata Y
    Percept Mot Skills; 2001 Dec; 93(3):735-8. PubMed ID: 11806596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Allocation of visual attention to spatial locations: tradeoff functions for event-related brain potentials and detection performance.
    Mangun GR; Hillyard SA
    Percept Psychophys; 1990 Jun; 47(6):532-50. PubMed ID: 2367174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pattern visual evoked potentials recorded from human occipital cortex with chronic subdural electrodes.
    Noachtar S; Hashimoto T; Lüders H
    Electroencephalogr Clin Neurophysiol; 1993; 88(6):435-46. PubMed ID: 7694829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.