BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

486 related articles for article (PubMed ID: 12009897)

  • 1. Conformational energetics of rhodopsin modulated by nonlamellar-forming lipids.
    Botelho AV; Gibson NJ; Thurmond RL; Wang Y; Brown MF
    Biochemistry; 2002 May; 41(20):6354-68. PubMed ID: 12009897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrostatic properties of membrane lipids coupled to metarhodopsin II formation in visual transduction.
    Wang Y; Botelho AV; Martinez GV; Brown MF
    J Am Chem Soc; 2002 Jul; 124(26):7690-701. PubMed ID: 12083922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphatidylethanolamine enhances rhodopsin photoactivation and transducin binding in a solid supported lipid bilayer as determined using plasmon-waveguide resonance spectroscopy.
    Alves ID; Salgado GF; Salamon Z; Brown MF; Tollin G; Hruby VJ
    Biophys J; 2005 Jan; 88(1):198-210. PubMed ID: 15501933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of rhodopsin function by properties of the membrane bilayer.
    Brown MF
    Chem Phys Lipids; 1994 Sep; 73(1-2):159-80. PubMed ID: 8001180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid headgroup and acyl chain composition modulate the MI-MII equilibrium of rhodopsin in recombinant membranes.
    Gibson NJ; Brown MF
    Biochemistry; 1993 Mar; 32(9):2438-54. PubMed ID: 8443184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane lipid influences on the energetics of the metarhodopsin I and metarhodopsin II conformational states of rhodopsin probed by flash photolysis.
    Gibson NJ; Brown MF
    Photochem Photobiol; 1991 Dec; 54(6):985-92. PubMed ID: 1775536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of the peptide antibiotic alamethicin with bilayer- and non-bilayer-forming lipids: influence of increasing alamethicin concentration on the lipids supramolecular structures.
    Angelova A; Ionov R; Koch MH; Rapp G
    Arch Biochem Biophys; 2000 Jun; 378(1):93-106. PubMed ID: 10871049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elastic properties of polyunsaturated phosphatidylethanolamines influence rhodopsin function.
    Teague WE; Soubias O; Petrache H; Fuller N; Hines KG; Rand RP; Gawrisch K
    Faraday Discuss; 2013; 161():383-95; discussion 419-59. PubMed ID: 23805751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation between the free energy of a channel-forming voltage-gated peptide and the spontaneous curvature of bilayer lipids.
    Lewis JR; Cafiso DS
    Biochemistry; 1999 May; 38(18):5932-8. PubMed ID: 10231547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebrosides alter the lyotropic and thermotropic phase transitions of DOPE:DOPC and DOPE:DOPC:sterol mixtures.
    Webb MS; Irving TC; Steponkus PL
    Biochim Biophys Acta; 1997 Jun; 1326(2):225-35. PubMed ID: 9218553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequential rearrangement of interhelical networks upon rhodopsin activation in membranes: the Meta II(a) conformational substate.
    Zaitseva E; Brown MF; Vogel R
    J Am Chem Soc; 2010 Apr; 132(13):4815-21. PubMed ID: 20230054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane Curvature Revisited-the Archetype of Rhodopsin Studied by Time-Resolved Electronic Spectroscopy.
    Fried SDE; Lewis JW; Szundi I; Martinez-Mayorga K; Mahalingam M; Vogel R; Kliger DS; Brown MF
    Biophys J; 2021 Feb; 120(3):440-452. PubMed ID: 33217383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of unsaturation and curvature on the transverse distribution of intramolecular dynamics of dipyrenyl lipids.
    Cheng KH; Somerharju P
    Biophys J; 1996 May; 70(5):2287-98. PubMed ID: 9172752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of the thermotropic phase behavior of phosphatidylcholines containing 2-alkyl substituted fatty acyl chains: a new class of phosphatidylcholines forming inverted nonlamellar phases.
    Lewis RN; McElhaney RN; Harper PE; Turner DC; Gruner SM
    Biophys J; 1994 Apr; 66(4):1088-103. PubMed ID: 8038381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Curvature and hydrophobic forces drive oligomerization and modulate activity of rhodopsin in membranes.
    Botelho AV; Huber T; Sakmar TP; Brown MF
    Biophys J; 2006 Dec; 91(12):4464-77. PubMed ID: 17012328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probability of alamethicin conductance states varies with nonlamellar tendency of bilayer phospholipids.
    Keller SL; Bezrukov SM; Gruner SM; Tate MW; Vodyanoy I; Parsegian VA
    Biophys J; 1993 Jul; 65(1):23-7. PubMed ID: 8369434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and functional properties of diacylglycerols in membranes.
    Goñi FM; Alonso A
    Prog Lipid Res; 1999 Jan; 38(1):1-48. PubMed ID: 10396601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhodopsin in dimyristoylphosphatidylcholine-reconstituted bilayers forms metarhodopsin II and activates Gt.
    Mitchell DC; Kibelbek J; Litman BJ
    Biochemistry; 1991 Jan; 30(1):37-42. PubMed ID: 1899020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of phosphatidylserine in the MI-MII equilibrium of rhodopsin.
    Gibson NJ; Brown MF
    Biochem Biophys Res Commun; 1991 Apr; 176(2):915-21. PubMed ID: 2025300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane curvature, lipid segregation, and structural transitions for phospholipids under dual-solvent stress.
    Rand RP; Fuller NL; Gruner SM; Parsegian VA
    Biochemistry; 1990 Jan; 29(1):76-87. PubMed ID: 2322550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.