These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 12009927)
1. 3-methyladenine-DNA glycosylase II: the crystal structure of an AlkA-hypoxanthine complex suggests the possibility of product inhibition. Teale M; Symersky J; DeLucas L Bioconjug Chem; 2002; 13(3):403-7. PubMed ID: 12009927 [TBL] [Abstract][Full Text] [Related]
2. Excision of hypoxanthine from DNA containing dIMP residues by the Escherichia coli, yeast, rat, and human alkylpurine DNA glycosylases. Saparbaev M; Laval J Proc Natl Acad Sci U S A; 1994 Jun; 91(13):5873-7. PubMed ID: 8016081 [TBL] [Abstract][Full Text] [Related]
3. Structural studies of human alkyladenine glycosylase and E. coli 3-methyladenine glycosylase. Hollis T; Lau A; Ellenberger T Mutat Res; 2000 Aug; 460(3-4):201-10. PubMed ID: 10946229 [TBL] [Abstract][Full Text] [Related]
4. Structural bases for substrate recognition and repair system of base-excision DNA repair proteins. Fujii S; Yamagata Y Nucleic Acids Symp Ser; 2000; (44):57-8. PubMed ID: 12903266 [TBL] [Abstract][Full Text] [Related]
5. Kinetic mechanism for the excision of hypoxanthine by Escherichia coli AlkA and evidence for binding to DNA ends. Zhao B; O'Brien PJ Biochemistry; 2011 May; 50(20):4350-9. PubMed ID: 21491902 [TBL] [Abstract][Full Text] [Related]
6. Crystallization and preliminary X-ray diffraction studies of 3-methyladenine-DNA glycosylase II from Escherichia coli. Yamagata Y; Odawara K; Tomita K; Nakabeppu Y; Sekiguchi M J Mol Biol; 1988 Dec; 204(4):1055-6. PubMed ID: 3065516 [TBL] [Abstract][Full Text] [Related]
7. Purification and properties of the alkylation repair DNA glycosylase encoded the MAG gene from Saccharomyces cerevisiae. Bjørås M; Klungland A; Johansen RF; Seeberg E Biochemistry; 1995 Apr; 34(14):4577-82. PubMed ID: 7718559 [TBL] [Abstract][Full Text] [Related]
8. Different efficiencies of the Tag and AlkA DNA glycosylases from Escherichia coli in the removal of 3-methyladenine from single-stranded DNA. Bjelland S; Seeberg E FEBS Lett; 1996 Nov; 397(1):127-9. PubMed ID: 8941728 [TBL] [Abstract][Full Text] [Related]
9. Cloning of Escherichia coli genes encoding 3-methyladenine DNA glycosylases I and II. Clarke ND; Kvaal M; Seeberg E Mol Gen Genet; 1984; 197(3):368-72. PubMed ID: 6098799 [TBL] [Abstract][Full Text] [Related]
10. Excision of 8-methylguanine site-specifically incorporated into oligonucleotide substrates by the AlkA protein of Escherichia coli. Gasparutto D; Dhérin C; Boiteux S; Cadet J DNA Repair (Amst); 2002 Jun; 1(6):437-47. PubMed ID: 12509232 [TBL] [Abstract][Full Text] [Related]
11. DNA bending and a flip-out mechanism for base excision by the helix-hairpin-helix DNA glycosylase, Escherichia coli AlkA. Hollis T; Ichikawa Y; Ellenberger T EMBO J; 2000 Feb; 19(4):758-66. PubMed ID: 10675345 [TBL] [Abstract][Full Text] [Related]
12. Structural basis for the excision repair of alkylation-damaged DNA. Labahn J; Schärer OD; Long A; Ezaz-Nikpay K; Verdine GL; Ellenberger TE Cell; 1996 Jul; 86(2):321-9. PubMed ID: 8706136 [TBL] [Abstract][Full Text] [Related]
13. Amplified expression of the tag+ and alkA+ genes in Escherichia coli: identification of gene products and effects on alkylation resistance. Kaasen I; Evensen G; Seeberg E J Bacteriol; 1986 Nov; 168(2):642-7. PubMed ID: 3536857 [TBL] [Abstract][Full Text] [Related]
14. Cloning and characterization of the alkA gene of Escherichia coli that encodes 3-methyladenine DNA glycosylase II. Nakabeppu Y; Kondo H; Sekiguchi M J Biol Chem; 1984 Nov; 259(22):13723-9. PubMed ID: 6389535 [TBL] [Abstract][Full Text] [Related]
15. Excision of 3-methylguanine from alkylated DNA by 3-methyladenine DNA glycosylase I of Escherichia coli. Bjelland S; Bjørås M; Seeberg E Nucleic Acids Res; 1993 May; 21(9):2045-9. PubMed ID: 8502545 [TBL] [Abstract][Full Text] [Related]
16. Enzymatic repair of 5-formyluracil. I. Excision of 5-formyluracil site-specifically incorporated into oligonucleotide substrates by alka protein (Escherichia coli 3-methyladenine DNA glycosylase II). Masaoka A; Terato H; Kobayashi M; Honsho A; Ohyama Y; Ide H J Biol Chem; 1999 Aug; 274(35):25136-43. PubMed ID: 10455195 [TBL] [Abstract][Full Text] [Related]
17. X-ray analysis of a complex of Escherichia coli uracil DNA glycosylase (EcUDG) with a proteinaceous inhibitor. The structure elucidation of a prokaryotic UDG. Ravishankar R; Bidya Sagar M; Roy S; Purnapatre K; Handa P; Varshney U; Vijayan M Nucleic Acids Res; 1998 Nov; 26(21):4880-7. PubMed ID: 9776748 [TBL] [Abstract][Full Text] [Related]
18. Crystal structure of Escherichia coli uracil DNA glycosylase and its complexes with uracil and glycerol: structure and glycosylase mechanism revisited. Xiao G; Tordova M; Jagadeesh J; Drohat AC; Stivers JT; Gilliland GL Proteins; 1999 Apr; 35(1):13-24. PubMed ID: 10090282 [TBL] [Abstract][Full Text] [Related]
19. DNA glycosylase activities for thymine residues oxidized in the methyl group are functions of the AlkA enzyme in Escherichia coli. Bjelland S; Birkeland NK; Benneche T; Volden G; Seeberg E J Biol Chem; 1994 Dec; 269(48):30489-95. PubMed ID: 7982966 [TBL] [Abstract][Full Text] [Related]
20. Escherichia coli, Saccharomyces cerevisiae, rat and human 3-methyladenine DNA glycosylases repair 1,N6-ethenoadenine when present in DNA. Saparbaev M; Kleibl K; Laval J Nucleic Acids Res; 1995 Sep; 23(18):3750-5. PubMed ID: 7479006 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]