BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 12009994)

  • 1. Environmental fate of spinosad. 1. Dissipation and degradation in aqueous systems.
    Cleveland CB; Bormett GA; Saunders DG; Powers FL; McGibbon AS; Reeves GL; Rutherford L; Balcer JL
    J Agric Food Chem; 2002 May; 50(11):3244-56. PubMed ID: 12009994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating Role of Abiotic Factors on Spinosad Dissipation.
    Adak T; Mukherjee I
    Bull Environ Contam Toxicol; 2016 Jan; 96(1):125-9. PubMed ID: 26350899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of the tricyclic antipsychotic drug chlorpromazine under environmental conditions, identification of its main aquatic biotic and abiotic transformation products by LC-MSn and their effects on environmental bacteria.
    Trautwein C; Kümmerer K
    J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Mar; 889-890():24-38. PubMed ID: 22342447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrolysis and photolysis of diacylhydrazines-type insect growth regulator JS-118 in aqueous solutions under abiotic conditions.
    Hu JY; Liu C; Zhang YC; Zheng ZX
    Bull Environ Contam Toxicol; 2009 May; 82(5):610-5. PubMed ID: 19165405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerobic degradation and photolysis of tylosin in water and soil.
    Hu D; Coats JR
    Environ Toxicol Chem; 2007 May; 26(5):884-9. PubMed ID: 17521133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning and analysis of the spinosad biosynthetic gene cluster of Saccharopolyspora spinosa.
    Waldron C; Matsushima P; Rosteck PR; Broughton MC; Turner J; Madduri K; Crawford KP; Merlo DJ; Baltz RH
    Chem Biol; 2001 May; 8(5):487-99. PubMed ID: 11358695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abatement of spinosad and indoxacarb residues in pure water by photocatalytic treatment using binary and ternary oxides of Zn and Ti.
    Fenoll J; Vela N; Garrido I; Pérez-Lucas G; Navarro S
    Environ Sci Pollut Res Int; 2014 Nov; 21(21):12143-53. PubMed ID: 24788933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and Insecticidal Activity of Spinosyns with C9-O-Benzyl Bioisosteres in Place of the 2',3',4'-Tri-O-methyl Rhamnose.
    Oliver MP; Crouse GD; Demeter DA; Sparks TC
    J Agric Food Chem; 2015 Jun; 63(23):5571-7. PubMed ID: 25993441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissipation behaviour of spinosad insecticide in soil, cabbage and cauliflower under subtropical conditions.
    Sharma A; Srivastava A; Ram B; Srivastava PC
    Pest Manag Sci; 2007 Nov; 63(11):1141-5. PubMed ID: 17708510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of flumioxazin in illuminated water-sediment systems.
    Shibata A; Kodaka R; Fujisawa T; Katagi T
    J Agric Food Chem; 2011 Oct; 59(20):11186-95. PubMed ID: 21919467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissipation and residue of spinosad in zucchini under field conditions.
    Liu Y; Sun H; Wang S
    Bull Environ Contam Toxicol; 2013 Aug; 91(2):256-9. PubMed ID: 23812115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of the photodegradation of a fragrance ingredient for aquatic environmental fate assessment.
    Lin J; Emberger M
    Chemosphere; 2017 Apr; 173():485-493. PubMed ID: 28131918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photolysis of spinosyns in seawater, stream water and various aqueous solutions.
    Liu S; Li QX
    Chemosphere; 2004 Sep; 56(11):1121-7. PubMed ID: 15276725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinosad toxicity to pollinators and associated risk.
    Mayes MA; Thompson GD; Husband B; Miles MM
    Rev Environ Contam Toxicol; 2003; 179():37-71. PubMed ID: 15366583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in the biochemistry of spinosyns.
    Huang KX; Xia L; Zhang Y; Ding X; Zahn JA
    Appl Microbiol Biotechnol; 2009 Feb; 82(1):13-23. PubMed ID: 19082588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behavior of pesticides in water-sediment systems.
    Katagi T
    Rev Environ Contam Toxicol; 2006; 187():133-251. PubMed ID: 16802581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental fate of chlorpyrifos.
    Racke KD
    Rev Environ Contam Toxicol; 1993; 131():1-150. PubMed ID: 7678349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Residues, dissipation, and risk assessment of spinosad in cowpea under open field conditions.
    Huan Z; Luo J; Xu Z; Xie D
    Environ Monit Assess; 2015 Nov; 187(11):706. PubMed ID: 26502727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of photolysis and hydrolysis of pyraclostrobin in aqueous solutions and its degradation products in paddy water.
    Zeng LR; Shi LH; Meng XG; Xu J; Jia GF; Gui T; Zhang YP; Hu Y
    J Environ Sci Health B; 2019; 54(4):317-325. PubMed ID: 30729870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyrithiones as antifoulants: environmental fate and loss of toxicity.
    Turley PA; Fenn RJ; Ritter JC; Callow ME
    Biofouling; 2005; 21(1):31-40. PubMed ID: 16019389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.