BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 12009994)

  • 21. Fate of spinosad in litter and soils of a white spruce plantation in central Ontario.
    Thompson DG; Harris BJ; Buscarini TM; Chartrand DT
    Pest Manag Sci; 2002 Apr; 58(4):397-404. PubMed ID: 11975189
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aerobic versus Anaerobic Microbial Degradation of Etofenprox in a California rice field soil.
    Vasquez ME; Holstege DM; Tjeerdema RS
    J Agric Food Chem; 2011 Mar; 59(6):2486-92. PubMed ID: 21351774
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Discovery of the butenyl-spinosyn insecticides: novel macrolides from the new bacterial strain Saccharopolyspora pogona.
    Lewer P; Hahn DR; Karr LL; Duebelbeis DO; Gilbert JR; Crouse GD; Worden T; Sparks TC; Edwards PM; Graupner PR
    Bioorg Med Chem; 2009 Jun; 17(12):4185-96. PubMed ID: 19324553
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrolysis and photolysis of flupyradifurone in aqueous solution and natural water: Degradation kinetics and pathway.
    Fang N; Lu Z; Hou Z; Zhang C; Zhao X
    Chemosphere; 2022 Jul; 298():134294. PubMed ID: 35283145
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The behavior of isopyrazam in aquatic ecosystems: implementation of a tiered investigation.
    Hand LH; Oliver RG
    Environ Toxicol Chem; 2010 Dec; 29(12):2702-12. PubMed ID: 20891015
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of spinosad and its metabolites in food and environmental matrices. 3. Immunoassay methods.
    Young DL; Mihaliak CA; West SD; Hanselman KA; Collins RA; Phillips AM; Robb CK
    J Agric Food Chem; 2000 Nov; 48(11):5146-53. PubMed ID: 11087450
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Abiotic degradation of triphenylborane pyridine (TPBP) antifouling agent in water.
    Zhou X; Okamura H; Nagata S
    Chemosphere; 2007 May; 67(10):1904-10. PubMed ID: 17257651
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anaerobic Degradation of [
    Kim JH; Seo JS; An JY; Kwon YS; Choi SG; Hwang KH; Koo SJ; Kim JH
    J Agric Food Chem; 2019 Dec; 67(49):13534-13543. PubMed ID: 31718169
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aquatic photochemistry, abiotic and aerobic biodegradability of thalidomide: identification of stable transformation products by LC-UV-MS(n).
    Mahmoud WM; Trautwein C; Leder C; Kümmerer K
    Sci Total Environ; 2013 Oct; 463-464():140-50. PubMed ID: 23792256
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Degradation of RPA 202248 [U-14C-phenyl]alpha(-(cyclopropylcarbonyl)-2-(methylsulfonyl)-beta-oxo-4-(trifluromethyl)benzenepropanenitrile), the primary degradation product of isoxaflutole, in an outdoor aquatic microcosm system.
    Rupprecht JK; Liu A; Kelly I; Allen R
    J Environ Sci Health B; 2004; 39(5-6):725-36. PubMed ID: 15620081
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Study of Oxyclozanide's Innate Stability Coupled with the Assessment of its Aquatic Photo-Transformation Using a Validated Isocratic HPLC Method.
    Saad AS; Ismail NS; Soliman M; Zaazaa HE
    J AOAC Int; 2019 Mar; 102(2):480-489. PubMed ID: 30086816
    [No Abstract]   [Full Text] [Related]  

  • 32. Environmental fate of non-steroidal anti-inflammatory drugs in river water/sediment systems.
    Koumaki E; Mamais D; Noutsopoulos C
    J Hazard Mater; 2017 Feb; 323(Pt A):233-241. PubMed ID: 27021262
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Abiotic processes influencing fipronil and desthiofipronil dissipation in California, USA, rice fields.
    Ngim KK; Crosby DG
    Environ Toxicol Chem; 2001 May; 20(5):972-7. PubMed ID: 11337886
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sunlight photolysis of benzotriazoles - Identification of transformation products and pathways.
    Weidauer C; Davis C; Raeke J; Seiwert B; Reemtsma T
    Chemosphere; 2016 Jul; 154():416-424. PubMed ID: 27081795
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The spinosyns, spinosad, spinetoram, and synthetic spinosyn mimics - discovery, exploration, and evolution of a natural product chemistry and the impact of computational tools.
    Sparks TC; Crouse GD; Benko Z; Demeter D; Giampietro NC; Lambert W; Brown AV
    Pest Manag Sci; 2021 Aug; 77(8):3637-3649. PubMed ID: 32893433
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of spinosad and its metabolites in food and environmental matrices. 1. High-performance liquid chromatography with ultraviolet detection.
    West SD; Yeh LT; Turner LG; Schwedler DA; Thomas AD; Duebelbeis DO
    J Agric Food Chem; 2000 Nov; 48(11):5131-7. PubMed ID: 11087448
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Environmental Fate and Toxicology of Dimethoate.
    Van Scoy A; Pennell A; Zhang X
    Rev Environ Contam Toxicol; 2016; 237():53-70. PubMed ID: 26613988
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantum Yield for the Aqueous Photochemical Degradation of Chlorantraniliprole and Simulation of Its Environmental Fate in a Model California Rice Field.
    Redman ZC; Anastasio C; Tjeerdema RS
    Environ Toxicol Chem; 2020 Oct; 39(10):1929-1935. PubMed ID: 32681738
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Natural solar photolysis of total organic chlorine, bromine and iodine in water.
    Abusallout I; Hua G
    Water Res; 2016 Apr; 92():69-77. PubMed ID: 26841230
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A review of spinosad as a natural product for larval mosquito control.
    Hertlein MB; Mavrotas C; Jousseaume C; Lysandrou M; Thompson GD; Jany W; Ritchie SA
    J Am Mosq Control Assoc; 2010 Mar; 26(1):67-87. PubMed ID: 20402353
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.