These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 12010129)

  • 1. The LysR-type regulator SftR is involved in soil survival and sulphate ester metabolism in Pseudomonas putida.
    Kahnert A; Mirleau P; Wait R; Kertesz MA
    Environ Microbiol; 2002 Apr; 4(4):225-37. PubMed ID: 12010129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of soil microbes in plant sulphur nutrition.
    Kertesz MA; Mirleau P
    J Exp Bot; 2004 Aug; 55(404):1939-45. PubMed ID: 15181108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance of organosulfur utilization for survival of Pseudomonas putida in soil and rhizosphere.
    Mirleau P; Wogelius R; Smith A; Kertesz MA
    Appl Environ Microbiol; 2005 Nov; 71(11):6571-7. PubMed ID: 16269683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic organization of sulphur-controlled aryl desulphonation in Pseudomonas putida S-313.
    Vermeij P; Wietek C; Kahnert A; Wüest T; Kertesz MA
    Mol Microbiol; 1999 Jun; 32(5):913-26. PubMed ID: 10361295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ssu locus plays a key role in organosulfur metabolism in Pseudomonas putida S-313.
    Kahnert A; Vermeij P; Wietek C; James P; Leisinger T; Kertesz MA
    J Bacteriol; 2000 May; 182(10):2869-78. PubMed ID: 10781557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization in Pseudomonas putida Cg1 of nahR and its role in bacterial survival in soil.
    Park W; Madsen EL
    Appl Microbiol Biotechnol; 2004 Dec; 66(2):209-16. PubMed ID: 15278309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The switch from inorganic to organic sulphur assimilation in Escherichia coli: adenosine 5'-phosphosulphate (APS) as a signalling molecule for sulphate excess.
    Bykowski T; van der Ploeg JR; Iwanicka-Nowicka R; Hryniewicz MM
    Mol Microbiol; 2002 Mar; 43(5):1347-58. PubMed ID: 11918818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The sigma54-dependent transcriptional activator SfnR regulates the expression of the Pseudomonas putida sfnFG operon responsible for dimethyl sulphone utilization.
    Endoh T; Habe H; Nojiri H; Yamane H; Omori T
    Mol Microbiol; 2005 Feb; 55(3):897-911. PubMed ID: 15661012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and characterization of a siderophore regulatory gene (pfrA) of Pseudomonas putida WCS358: homology to the alginate regulatory gene algQ of Pseudomonas aeruginosa.
    Venturi V; Ottevanger C; Leong J; Weisbeek PJ
    Mol Microbiol; 1993 Oct; 10(1):63-73. PubMed ID: 7968519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Draft genome sequence analysis of a Pseudomonas putida W15Oct28 strain with antagonistic activity to Gram-positive and Pseudomonas sp. pathogens.
    Ye L; Hildebrand F; Dingemans J; Ballet S; Laus G; Matthijs S; Berendsen R; Cornelis P
    PLoS One; 2014; 9(11):e110038. PubMed ID: 25369289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of the exbB, exbD and tonB genes of Pseudomonas putida WCS358: their involvement in ferric-pseudobactin transport.
    Bitter W; Tommassen J; Weisbeek PJ
    Mol Microbiol; 1993 Jan; 7(1):117-30. PubMed ID: 8437515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A role for the regulator PsrA in the polyhydroxyalkanoate metabolism of Pseudomonas putida KT2440.
    Fonseca P; de la Peña F; Prieto MA
    Int J Biol Macromol; 2014 Nov; 71():14-20. PubMed ID: 24751507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and identification of genes essential for dimethyl sulfide utilization in Pseudomonas putida strain DS1.
    Endoh T; Kasuga K; Horinouchi M; Yoshida T; Habe H; Nojiri H; Omori T
    Appl Microbiol Biotechnol; 2003 Jul; 62(1):83-91. PubMed ID: 12835925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a membrane protein and a truncated LysR-type regulator associated with the toluene degradation pathway in Pseudomonas putida F1.
    Wang Y; Rawlings M; Gibson DT; Labbé D; Bergeron H; Brousseau R; Lau PC
    Mol Gen Genet; 1995 Mar; 246(5):570-9. PubMed ID: 7535376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of NahR, a LysR-type transcriptional regulator, with the alpha subunit of RNA polymerase in the naphthalene degrading bacterium, Pseudomonas putida NCIB 9816-4.
    Park W; Jeon CO; Madsen EL
    FEMS Microbiol Lett; 2002 Aug; 213(2):159-65. PubMed ID: 12167532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon and sulphur utilization during growth of Pseudomonas fluorescens on potassium D-glucose 6-O-sulphate as the sole sulphur source.
    Fitzgerald JW; Dodgson KS
    Biochem J; 1971 Apr; 122(3):277-83. PubMed ID: 5118101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncoupling of choline-O-sulphate utilization from osmoprotection in Pseudomonas putida.
    Galvão TC; de Lorenzo V; Cánovas D
    Mol Microbiol; 2006 Dec; 62(6):1643-54. PubMed ID: 17116241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulphur utilization during growth of pseudomonas fluorescens on potassium D-glucose 6-O-sulphate.
    Fitzgerald JW; Dodgson KS
    Biochem J; 1971 Feb; 121(3):521-8. PubMed ID: 5119788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FinR Regulates Expression of
    Xiao Y; Zhu W; Liu H; Nie H; Chen W; Huang Q
    Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30097438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The transcriptional regulator SsuR activates expression of the Corynebacterium glutamicum sulphonate utilization genes in the absence of sulphate.
    Koch DJ; Rückert C; Albersmeier A; Hüser AT; Tauch A; Pühler A; Kalinowski J
    Mol Microbiol; 2005 Oct; 58(2):480-94. PubMed ID: 16194234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.