These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 1201046)
1. Contact versus energy transfer fluorescence quenching in the sulfur substituted form of the enzyme rhodanese: a study using cesium ion resolved emission spectra. Guido K; Horowitz PM Biochem Biophys Res Commun; 1975 Nov; 67(2):670-6. PubMed ID: 1201046 [No Abstract] [Full Text] [Related]
2. Spectral studies of the tryptophan exposure in the enzyme rhodanese. Guido K; Baillie RD; Horowitz PM Biochim Biophys Acta; 1976 Apr; 427(2):600-7. PubMed ID: 1268221 [TBL] [Abstract][Full Text] [Related]
3. Active site modifications quench intrinsic fluorescence of rhodanese by different mechanisms. Cannella C; Berni R; Rosato N; Finazzi-Agrò A Biochemistry; 1986 Nov; 25(23):7319-23. PubMed ID: 3467793 [TBL] [Abstract][Full Text] [Related]
5. A fluorescence study of conformational changes induced by substrate and temperature in bovine liver thiosulfate sulfurtransferase. Wasylewski Z; Horowitz PM Biochim Biophys Acta; 1982 Feb; 701(1):12-8. PubMed ID: 6948580 [TBL] [Abstract][Full Text] [Related]
6. Reaction of rhodanese with dithiothreitol. Pecci L; Pensa B; Costa M; Cignini PL; Cannella C Biochim Biophys Acta; 1976 Aug; 445(1):104-11. PubMed ID: 986188 [TBL] [Abstract][Full Text] [Related]
7. Surface changes and role of buried water molecules during the sulfane sulfur transfer in rhodanese from Azotobacter vinelandii: a fluorescence quenching and nuclear magnetic relaxation dispersion spectroscopic study. Fasano M; Orsale M; Melino S; Nicolai E; Forlani F; Rosato N; Cicero D; Pagani S; Paci M Biochemistry; 2003 Jul; 42(28):8550-7. PubMed ID: 12859202 [TBL] [Abstract][Full Text] [Related]
8. The inhibition of rhodanese by lipoate and iron-sulfur proteins. Pagani S; Bonomi F; Cerletti P Biochim Biophys Acta; 1983 Jan; 742(1):116-21. PubMed ID: 6402017 [TBL] [Abstract][Full Text] [Related]
9. Domain structural flexibility in rhodanese examined by quenching of a phosphorescent probe. Koloczek H; Vanderkooi JM Biochim Biophys Acta; 1987 Nov; 916(2):236-44. PubMed ID: 2445385 [TBL] [Abstract][Full Text] [Related]
10. Rhodanese-Mediated sulfur transfer to succinate dehydrogenase. Bonomi F; Pagani S; Cerletti P; Cannella C Eur J Biochem; 1977 Jan; 72(1):17-24. PubMed ID: 318999 [TBL] [Abstract][Full Text] [Related]
11. Soaking in Cs2SO4 reveals a caesium-aromatic interaction in bovine-liver rhodanese. Kooystra PJ; Kalk KH; Hol WG Eur J Biochem; 1988 Nov; 177(2):345-9. PubMed ID: 3191921 [TBL] [Abstract][Full Text] [Related]
12. Differences in the binding of sulfate, selenate and thiosulfate ions to bovine liver rhodanese, and a description of a binding site for ammonium and sodium ions. An X-ray diffraction study. Lijk LJ; Torfs CA; Kalk KH; De Maeyer MC; Hol WG Eur J Biochem; 1984 Jul; 142(2):399-408. PubMed ID: 6589161 [TBL] [Abstract][Full Text] [Related]
14. Interaction of rhodanese with intermediates of oxygen reduction. Cannella C; Berni R FEBS Lett; 1983 Oct; 162(1):180-4. PubMed ID: 6311631 [TBL] [Abstract][Full Text] [Related]
15. Effects of metal-ion binding on rhodanese activity. Volini M; Van Sweringen B; Chen FS Arch Biochem Biophys; 1978 Nov; 191(1):205-15. PubMed ID: 736562 [No Abstract] [Full Text] [Related]
16. The use of tritium exchange to detect conformational differences between intermediates in catalysis by the enzyme rhodanese. Horowitz P; Falksen K Biochim Biophys Acta; 1983 Sep; 747(1-2):37-41. PubMed ID: 6576809 [TBL] [Abstract][Full Text] [Related]
18. Chemical modification of bovine liver rhodanese with tetrathionate: differential effects on the sulfur-free and sulfur-containing catalytic intermediates. Prasad AR; Horowitz PM Biochim Biophys Acta; 1987 Jan; 911(1):102-8. PubMed ID: 3466649 [TBL] [Abstract][Full Text] [Related]
19. Mutagenic analysis of Thr-232 in rhodanese from Azotobacter vinelandii highlighted the differences of this prokaryotic enzyme from the known sulfurtransferases. Pagani S; Forlani F; Carpen A; Bordo D; Colnaghi R FEBS Lett; 2000 Apr; 472(2-3):307-11. PubMed ID: 10788632 [TBL] [Abstract][Full Text] [Related]
20. The use of intrinsic protein fluorescence to quantitate enzyme-bound persulfide and to measure equilibria between intermediates in rhodanese catalysis. Horowitz P; Criscimagna NL J Biol Chem; 1983 Jul; 258(13):7894-6. PubMed ID: 6575013 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]