These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 12010738)

  • 1. Vampire bat, shrew, and bear: comparative physiology and chronic renal failure.
    Singer MA
    Am J Physiol Regul Integr Comp Physiol; 2002 Jun; 282(6):R1583-92. PubMed ID: 12010738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water balance and kidney function in the least shrew (Cryptotis parva).
    Goldstein DL; Newland S
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Sep; 139(1):71-6. PubMed ID: 15471683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein- and diabetes-induced glomerular hyperfiltration: role of glucagon, vasopressin, and urea.
    Bankir L; Roussel R; Bouby N
    Am J Physiol Renal Physiol; 2015 Jul; 309(1):F2-23. PubMed ID: 25925260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aspects regarding renal morphophysiology of fruit-eating and vampire bats.
    Linhares BS; Ribeiro SP; de Freitas RMP; Puga LCHP; Sartori SSR; Freitas MB
    Zoology (Jena); 2021 Feb; 144():125861. PubMed ID: 33232886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of dietary protein in progressive renal disease.
    Brouhard BH
    Am J Dis Child; 1986 Jul; 140(7):630-7. PubMed ID: 3521257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Consumption of blood, renal function and utilization of free water by the vampire bat, Desmodus rotundus.
    Busch C
    Comp Biochem Physiol A Comp Physiol; 1988; 90(1):141-6. PubMed ID: 2900098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The precision of estimating protein intake of patients with chronic renal failure.
    Masud T; Manatunga A; Cotsonis G; Mitch WE
    Kidney Int; 2002 Nov; 62(5):1750-6. PubMed ID: 12371976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological adaptations during development of the kidneys in Vampire bats.
    Ribeiro SP; Linhares BS; Sarandy MM; Fonseca CC; Puga LCHP; Gonzaga W; Sartori SSR; Matta SLPD; Freitas MB
    Zoology (Jena); 2022 Feb; 150():125980. PubMed ID: 34861535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renal excretion of urea in response to changes in nitrogen intake in desert (black Bedouin) and non-desert (Swiss Saanen) goats.
    Silanikove N
    Comp Biochem Physiol A Comp Physiol; 1984; 79(4):651-4. PubMed ID: 6150801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dietary protein-induced changes in excretory function: a general animal design feature.
    Singer MA
    Comp Biochem Physiol B Biochem Mol Biol; 2003 Dec; 136(4):785-801. PubMed ID: 14662303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of protein intake in children with chronic renal insufficiency.
    Orejas G; Santos F; Málaga S; Cobo A; Rey C; Martínez V
    Miner Electrolyte Metab; 1996; 22(1-3):79-82. PubMed ID: 8676832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benzoate-induced changes in glycine and urea metabolism in patients with chronic renal failure.
    Mitch WE; Brusilow S
    J Pharmacol Exp Ther; 1982 Sep; 222(3):572-5. PubMed ID: 7108765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The place of dietetic treatment in chronic renal failure (cons).
    Migone L; Bone F; Zanelli P
    Contrib Nephrol; 1982; (34):8-21. PubMed ID: 7172683
    [No Abstract]   [Full Text] [Related]  

  • 14. Of mice and men and elephants: metabolic rate sets glomerular filtration rate.
    Singer MA
    Am J Kidney Dis; 2001 Jan; 37(1):164-178. PubMed ID: 11136185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gastric Na+K+ATPase activity and intestinal urea hydrolysis of the common vampire bat, Desmodus rotundus.
    Harlow HJ; Braun EJ
    Comp Biochem Physiol A Physiol; 1997 Nov; 118(3):665-9. PubMed ID: 9406442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Association between Renal Hyperfiltration and the Sources of Habitual Protein Intake and Dietary Acid Load in a General Population with Preserved Renal Function: The KoGES Study.
    So R; Song S; Lee JE; Yoon HJ
    PLoS One; 2016; 11(11):e0166495. PubMed ID: 27846266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial protein production determined by urinary allantoin and renal urea sparing in normal and low protein fed Corriedale sheep.
    Tebot I; Britos A; Godeau JM; Cirio A
    Vet Res; 2002; 33(1):101-6. PubMed ID: 11873814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of a high protein intake on renal function of patients with chronic renal insufficiency.
    Schaap GH; Bilo HJ; Alferink TH; Oe PL; Donker AJ
    Nephron; 1987; 47(1):1-6. PubMed ID: 3627332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth in experimental renal failure: role of calorie and amino acid intake.
    Diaz M; Kleinknecht C; Broyer M
    Kidney Int; 1975 Dec; 8(6):349-54. PubMed ID: 1206851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glomerular filtration rate estimated from the uptake phase of 99mTc-DTPA renography in chronic renal failure.
    Petersen LJ; Petersen JR; Talleruphuus U; Møller ML; Ladefoged SD; Mehlsen J; Jensen HA
    Nephrol Dial Transplant; 1999 Jul; 14(7):1673-8. PubMed ID: 10435875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.