BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 12010747)

  • 1. Pre- and postjunctional alpha(2)-adrenergic receptors in fetal and adult ovine cerebral arteries.
    Bishai JM; Penninga L; Nijland R; Meulenaar R; Gheorghe CP; Zhao Y; Buchholz JN; Zhang L; Longo LD
    Am J Physiol Regul Integr Comp Physiol; 2002 Jun; 282(6):R1654-62. PubMed ID: 12010747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence against alpha-adrenoceptors mediating relaxation in rat thoracic aortae: alpha-agonists relaxation depends on interaction with alpha-adrenoceptors.
    Castillo EF; Ortíz CS; López RM; Ruíz A; Vélez JM; Castillo C
    Fundam Clin Pharmacol; 2006 Aug; 20(4):339-49. PubMed ID: 16867017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alpha2-adrenoceptor ligands inhibit alpha1-adrenoceptor-mediated contraction of isolated rat arteries.
    Artigues-Varin C; Richard V; Varin R; Mulder P; Thuillez C
    Fundam Clin Pharmacol; 2002 Aug; 16(4):281-7. PubMed ID: 12570016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High altitude-induced changes in alpha1-adrenergic receptors and Ins(1,4,5)P3 responses in cerebral arteries.
    Ueno N; Zhao Y; Zhang L; Longo LD
    Am J Physiol; 1997 Feb; 272(2 Pt 2):R669-74. PubMed ID: 9124493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental changes in alpha 1-adrenergic receptors, IP3 responses, and NE-induced contraction in cerebral arteries.
    Longo LD; Ueno N; Zhao Y; Pearce WJ; Zhang L
    Am J Physiol; 1996 Dec; 271(6 Pt 2):H2313-9. PubMed ID: 8997288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. alpha(1)-Adrenergic receptor subtype function in fetal and adult cerebral arteries.
    Goyal R; Mittal A; Chu N; Zhang L; Longo LD
    Am J Physiol Heart Circ Physiol; 2010 Jun; 298(6):H1797-806. PubMed ID: 20348219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NE-induced contraction, alpha 1-adrenergic receptors, and Ins(1,4,5)P3 responses in cerebral arteries.
    Longo LD; Ueno N; Zhao Y; Zhang L; Pearce WJ
    Am J Physiol; 1996 Mar; 270(3 Pt 2):H915-23. PubMed ID: 8780186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential contributions of alpha-1 and alpha-2 adrenoceptors to vasoconstriction in mesenteric arteries and veins of normal and hypertensive mice.
    Pérez-Rivera AA; Hlavacova A; Rosario-Colón LA; Fink GD; Galligan JJ
    Vascul Pharmacol; 2007 May; 46(5):373-82. PubMed ID: 17329171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alpha-adrenoceptors in equine digital veins: evidence for the presence of both alpha1 and alpha2-receptors mediating vasoconstriction.
    Elliott J
    J Vet Pharmacol Ther; 1997 Aug; 20(4):308-17. PubMed ID: 9280371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Ca(2+) channels in NE-induced increase in [Ca(2+)](i) and tension in fetal and adult cerebral arteries.
    Long W; Zhao Y; Zhang L; Longo LD
    Am J Physiol; 1999 Jul; 277(1):R286-94. PubMed ID: 10409284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronic hypoxia alters prejunctional alpha(2)-receptor function in vascular adrenergic nerves of adult and fetal sheep.
    Buchholz J; Duckles SP
    Am J Physiol Regul Integr Comp Physiol; 2001 Sep; 281(3):R926-34. PubMed ID: 11507010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased vascular responsiveness to alpha 2-adrenergic stimulation during NOS inhibition-induced hypertension.
    Kanagy NL
    Am J Physiol; 1997 Dec; 273(6):H2756-64. PubMed ID: 9435612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition by midazolam of the adrenergic function in the isolated canine mesenteric vein.
    Kobayashi Y; Muldoon SM; Kiyose M; Hagiwara T; Kumasaka S; Okabe E
    Acta Anaesthesiol Scand; 1998 Nov; 42(10):1157-63. PubMed ID: 9834797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Actions of alpha2 adrenoceptor ligands at alpha2A and 5-HT1A receptors: the antagonist, atipamezole, and the agonist, dexmedetomidine, are highly selective for alpha2A adrenoceptors.
    Newman-Tancredi A; Nicolas JP; Audinot V; Gavaudan S; Verrièle L; Touzard M; Chaput C; Richard N; Millan MJ
    Naunyn Schmiedebergs Arch Pharmacol; 1998 Aug; 358(2):197-206. PubMed ID: 9750005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the postsynaptic alpha(2)-adrenergic receptor subtypes in catecholamine-induced vasoconstriction.
    Duka I; Gavras I; Johns C; Handy DE; Gavras H
    Gen Pharmacol; 2000 Feb; 34(2):101-6. PubMed ID: 10974417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in noradrenergic sensitivity to tumor necrosis factor-alpha in brains of rats administered clonidine.
    Ignatowski TA; Chou RC; Spengler RN
    J Neuroimmunol; 1996 Oct; 70(1):55-63. PubMed ID: 8862135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional characteristics of alpha adrenergic and endothelinergic receptors in pressurized rat mesenteric veins.
    Enouri S; Monteith G; Johnson R
    Can J Physiol Pharmacol; 2013 Jul; 91(7):538-46. PubMed ID: 23826642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the postjunctional alpha 2C-adrenoceptor mediating vasoconstriction to UK14304 in porcine pulmonary veins.
    Görnemann T; von Wenckstern H; Kleuser B; Villalón CM; Centurión D; Jähnichen S; Pertz HH
    Br J Pharmacol; 2007 May; 151(2):186-94. PubMed ID: 17375080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuronal responses to noradrenaline in the cerebral cortex: evidence against the involvement of alpha 2-adrenoceptors.
    Bradshaw CM; Sheridan RD; Szabadi E
    Br J Pharmacol; 1984 Jun; 82(2):453-8. PubMed ID: 6145471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prejunctional alpha 2-adrenoceptors inhibit acetylcholine release from cholinergic nerves in equine airways.
    Yu M; Wang Z; Robinson NE
    Am J Physiol; 1993 Dec; 265(6 Pt 1):L565-70. PubMed ID: 7904128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.