These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 12011086)
1. Is the glycolytic flux in Lactococcus lactis primarily controlled by the redox charge? Kinetics of NAD(+) and NADH pools determined in vivo by 13C NMR. Neves AR; Ventura R; Mansour N; Shearman C; Gasson MJ; Maycock C; Ramos A; Santos H J Biol Chem; 2002 Aug; 277(31):28088-98. PubMed ID: 12011086 [TBL] [Abstract][Full Text] [Related]
2. Suppression of lactate production by aerobic fed-batch cultures of Lactococcus lactis. Sano A; Takatera M; Kawai M; Ichinose R; Yamasaki-Yashiki S; Katakura Y J Biosci Bioeng; 2020 Oct; 130(4):402-408. PubMed ID: 32669208 [TBL] [Abstract][Full Text] [Related]
3. Metabolic characterization of Lactococcus lactis deficient in lactate dehydrogenase using in vivo 13C-NMR. Neves AR; Ramos A; Shearman C; Gasson MJ; Almeida JS; Santos H Eur J Biochem; 2000 Jun; 267(12):3859-68. PubMed ID: 10849005 [TBL] [Abstract][Full Text] [Related]
4. Effect of different NADH oxidase levels on glucose metabolism by Lactococcus lactis: kinetics of intracellular metabolite pools determined by in vivo nuclear magnetic resonance. Neves AR; Ramos A; Costa H; van Swam II; Hugenholtz J; Kleerebezem M; de Vos W; Santos H Appl Environ Microbiol; 2002 Dec; 68(12):6332-42. PubMed ID: 12450858 [TBL] [Abstract][Full Text] [Related]
5. Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase. Lopez de Felipe F; Kleerebezem M; de Vos WM; Hugenholtz J J Bacteriol; 1998 Aug; 180(15):3804-8. PubMed ID: 9683475 [TBL] [Abstract][Full Text] [Related]
6. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. Garrigues C; Loubiere P; Lindley ND; Cocaign-Bousquet M J Bacteriol; 1997 Sep; 179(17):5282-7. PubMed ID: 9286977 [TBL] [Abstract][Full Text] [Related]
7. Effect of pyruvate kinase overproduction on glucose metabolism of Lactococcus lactis. Ramos A; Neves AR; Ventura R; Maycock C; López P; Santos H Microbiology (Reading); 2004 Apr; 150(Pt 4):1103-1111. PubMed ID: 15073320 [TBL] [Abstract][Full Text] [Related]
8. Catabolism of mannitol in Lactococcus lactis MG1363 and a mutant defective in lactate dehydrogenase. Neves AR; Ramos A; Shearman C; Gasson MJ; Santos H Microbiology (Reading); 2002 Nov; 148(Pt 11):3467-3476. PubMed ID: 12427938 [TBL] [Abstract][Full Text] [Related]
9. Glucose metabolism and regulation of glycolysis in Lactococcus lactis strains with decreased lactate dehydrogenase activity. Garrigues C; Goupil-Feuillerat N; Cocaign-Bousquet M; Renault P; Lindley ND; Loubiere P Metab Eng; 2001 Jul; 3(3):211-7. PubMed ID: 11461143 [TBL] [Abstract][Full Text] [Related]
10. Glyceraldehyde-3-phosphate dehydrogenase regulation in Lactococcus lactis ssp. cremoris MG1363 or relA mutant at low pH. Mercade M; Cocaign-Bousquet M; Loubière P J Appl Microbiol; 2006 Jun; 100(6):1364-72. PubMed ID: 16696685 [TBL] [Abstract][Full Text] [Related]
11. [Heterologous expression of H2O-forming NADH oxidase in Torulopsis glabrata significantly enhance the pyruvate productivity of the host]. Dong Z; Li X; Liu L; Du G; Chen J Wei Sheng Wu Xue Bao; 2008 Aug; 48(8):1061-6. PubMed ID: 18956756 [TBL] [Abstract][Full Text] [Related]
12. Fine tuning of the lactate and diacetyl production through promoter engineering in Lactococcus lactis. Guo T; Kong J; Zhang L; Zhang C; Hu S PLoS One; 2012; 7(4):e36296. PubMed ID: 22558426 [TBL] [Abstract][Full Text] [Related]
13. Experimental determination of control of glycolysis in Lactococcus lactis. Koebmann BJ; Andersen HW; Solem C; Jensen PR Antonie Van Leeuwenhoek; 2002 Aug; 82(1-4):237-48. PubMed ID: 12369190 [TBL] [Abstract][Full Text] [Related]
14. The lactate dehydrogenases encoded by the ldh and ldhB genes in Lactococcus lactis exhibit distinct regulation and catalytic properties - comparative modeling to probe the molecular basis. Gaspar P; Neves AR; Shearman CA; Gasson MJ; Baptista AM; Turner DL; Soares CM; Santos H FEBS J; 2007 Nov; 274(22):5924-36. PubMed ID: 17944947 [TBL] [Abstract][Full Text] [Related]
15. High yields of 2,3-butanediol and mannitol in Lactococcus lactis through engineering of NAD⁺ cofactor recycling. Gaspar P; Neves AR; Gasson MJ; Shearman CA; Santos H Appl Environ Microbiol; 2011 Oct; 77(19):6826-35. PubMed ID: 21841021 [TBL] [Abstract][Full Text] [Related]
16. Pyruvate flux distribution in NADH-oxidase-overproducing Lactococcus lactis strain as a function of culture conditions. Lopez de Felipe F; Hugenholtz J FEMS Microbiol Lett; 1999 Oct; 179(2):461-6. PubMed ID: 10518751 [TBL] [Abstract][Full Text] [Related]
17. Pyruvate metabolism in Lactococcus lactis is dependent upon glyceraldehyde-3-phosphate dehydrogenase activity. Even S; Garrigues C; Loubiere P; Lindley ND; Cocaign-Bousquet M Metab Eng; 1999 Jul; 1(3):198-205. PubMed ID: 10937934 [TBL] [Abstract][Full Text] [Related]
18. Engineering Lactococcus lactis for production of mannitol: high yields from food-grade strains deficient in lactate dehydrogenase and the mannitol transport system. Gaspar P; Neves AR; Ramos A; Gasson MJ; Shearman CA; Santos H Appl Environ Microbiol; 2004 Mar; 70(3):1466-74. PubMed ID: 15006767 [TBL] [Abstract][Full Text] [Related]
19. Loss of NADH Oxidase Activity in Streptococcus mutans Leads to Rex-Mediated Overcompensation in NAD+ Regeneration by Lactate Dehydrogenase. Baker JL; Derr AM; Faustoferri RC; Quivey RG J Bacteriol; 2015 Dec; 197(23):3645-57. PubMed ID: 26350138 [TBL] [Abstract][Full Text] [Related]
20. Isolation and properties of Lactococcus lactis subsp. lactis biovar diacetylactis CNRZ 483 mutants producing diacetyl and acetoin from glucose. Boumerdassi H; Monnet C; Desmazeaud M; Corrieu G Appl Environ Microbiol; 1997 Jun; 63(6):2293-9. PubMed ID: 9172349 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]