These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 12012075)

  • 1. The reproducibility of estimates of critical power and anaerobic work capacity in upper-body exercise.
    Taylor SA; Batterham AM
    Eur J Appl Physiol; 2002 May; 87(1):43-9. PubMed ID: 12012075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of pedal cadence on parameters of the hyperbolic power-time relationship.
    Hill DW; Smith JC; Leuschel JL; Chasteen SD; Miller SA
    Int J Sports Med; 1995 Feb; 16(2):82-7. PubMed ID: 7751081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The critical power function is dependent on the duration of the predictive exercise tests chosen.
    Bishop D; Jenkins DG; Howard A
    Int J Sports Med; 1998 Feb; 19(2):125-9. PubMed ID: 9562222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new single work bout test to estimate critical power and anaerobic work capacity.
    Bergstrom HC; Housh TJ; Zuniga JM; Camic CL; Traylor DA; Schmidt RJ; Johnson GO
    J Strength Cond Res; 2012 Mar; 26(3):656-63. PubMed ID: 22310519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The curvature constant parameter of the power-duration curve for varied-power exercise.
    Fukuba Y; Miura A; Endo M; Kan A; Yanagawa K; Whipp BJ
    Med Sci Sports Exerc; 2003 Aug; 35(8):1413-8. PubMed ID: 12900698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The y-intercept of the critical power function as a measure of anaerobic work capacity.
    Jenkins DG; Quigley BM
    Ergonomics; 1991 Jan; 34(1):13-22. PubMed ID: 2009846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternative forms of the critical power test for ramp exercise.
    Morton RH
    Ergonomics; 1997 May; 40(5):511-4. PubMed ID: 9149552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 3-parameter critical power model.
    Morton RH
    Ergonomics; 1996 Apr; 39(4):611-9. PubMed ID: 8854981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of normobaric hypoxia on upper body critical power and anaerobic working capacity.
    La Monica MB; Fukuda DH; Starling-Smith TM; Wang R; Hoffman JR; Stout JR
    Respir Physiol Neurobiol; 2018 Feb; 249():1-6. PubMed ID: 29247712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of methods of estimating anaerobic work capacity.
    Hill DW; Smith JC
    Ergonomics; 1993 Dec; 36(12):1495-500. PubMed ID: 8287856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences among estimates of critical power and anaerobic work capacity derived from five mathematical models and the three-minute all-out test.
    Bergstrom HC; Housh TJ; Zuniga JM; Traylor DA; Lewis RW; Camic CL; Schmidt RJ; Johnson GO
    J Strength Cond Res; 2014 Mar; 28(3):592-600. PubMed ID: 24566607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting endurance limits in arm cranking exercise with a subjectively based method.
    Capodaglio P; Bazzini G
    Ergonomics; 1996 Jul; 39(7):924-32. PubMed ID: 8690009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical torque, estimated time to exhaustion, and anaerobic work capacity from linear and nonlinear mathematical models.
    Hendrix CR; Housh TJ; Mielke M; Zuniga JM; Camic CL; Johnson GO; Schmidt RJ
    Med Sci Sports Exerc; 2009 Dec; 41(12):2185-90. PubMed ID: 19915500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of critical power with nonlinear and linear models.
    Gaesser GA; Carnevale TJ; Garfinkel A; Walter DO; Womack CJ
    Med Sci Sports Exerc; 1995 Oct; 27(10):1430-8. PubMed ID: 8531615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic Work Capacity derived from isokinetic and isoinertial cycling.
    Wiedemann MS; Bosquet L
    Int J Sports Med; 2010 Feb; 31(2):89-94. PubMed ID: 20222000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the power-duration relationship in upper-limb exercises.
    Belasco Junior D; Oliveira FR; Serafini JA; Silva AC
    Rev Bras Fisioter; 2010; 14(4):316-21. PubMed ID: 20945006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions of Body-Composition Characteristics to Critical Power and Anaerobic Work Capacity.
    Byrd MT; Switalla JR; Eastman JE; Wallace BJ; Clasey JL; Bergstrom HC
    Int J Sports Physiol Perform; 2018 Feb; 13(2):189-193. PubMed ID: 28530517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validity of the two-parameter model in estimating the anaerobic work capacity.
    Dekerle J; Brickley G; Hammond AJ; Pringle JS; Carter H
    Eur J Appl Physiol; 2006 Feb; 96(3):257-64. PubMed ID: 16261386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple multistage field test for the prediction of anaerobic capacity in female games players.
    Cooper SM; Baker JS; Eaton ZE; Matthews N
    Br J Sports Med; 2004 Dec; 38(6):784-9. PubMed ID: 15562181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ventilatory anaerobic threshold is related to, but is lower than, the critical power, but does not explain exercise tolerance at this workrate.
    Okudan N; Gökbel H
    J Sports Med Phys Fitness; 2006 Mar; 46(1):15-9. PubMed ID: 16596094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.