These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 12012101)

  • 21. The goldfish ear codes the axis of acoustic particle motion in three dimensions.
    Fay RR
    Science; 1984 Aug; 225(4665):951-4. PubMed ID: 6474161
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A corollary discharge mechanism modulates central auditory processing in singing crickets.
    Poulet JF; Hedwig B
    J Neurophysiol; 2003 Mar; 89(3):1528-40. PubMed ID: 12626626
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wide-ranging frequency preferences of auditory midbrain neurons: Roles of membrane time constant and synaptic properties.
    Yang S; Lin W; Feng AS
    Eur J Neurosci; 2009 Jul; 30(1):76-90. PubMed ID: 19558621
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anatomical connections and electrophysiological properties of toral and dorsal tegmental neurons in the terrestrial urodele Salamandra salamandra.
    Manteuffel G; Naujoks-Manteuffel C
    J Hirnforsch; 1990; 31(1):65-76. PubMed ID: 2358655
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Model of the bicercal mechanism of constant direction perception of a mechano-acoustic signal in the insect].
    Rozhkova GI
    Neirofiziologiia; 1987; 19(1):53-61. PubMed ID: 3574553
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coding of lateral line stimuli in the goldfish midbrain in still and running water.
    Engelmann J; Bleckmann H
    Zoology (Jena); 2004; 107(2):135-51. PubMed ID: 16351934
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Representation of spectrotemporal sound information in the ascending auditory pathway.
    Escabí MA; Read HL
    Biol Cybern; 2003 Nov; 89(5):350-62. PubMed ID: 14669015
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Toral lateral line units of goldfish, Carassius auratus, are sensitive to the position and vibration direction of a vibrating sphere.
    Meyer G; Klein A; Mogdans J; Bleckmann H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Sep; 198(9):639-53. PubMed ID: 22669431
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Seasonal changes in frequency tuning and temporal processing in single neurons in the frog auditory midbrain.
    Goense JB; Feng AS
    J Neurobiol; 2005 Oct; 65(1):22-36. PubMed ID: 16003763
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neural cross-correlation and signal decorrelation: insights into coding of auditory space.
    Saberi K; Petrosyan A
    J Theor Biol; 2005 Jul; 235(1):45-56. PubMed ID: 15833312
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of noise exposure on click detection and the temporal resolution ability of the goldfish auditory system.
    Wysocki LE; Ladich F
    Hear Res; 2005 Mar; 201(1-2):27-36. PubMed ID: 15721558
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The contribution of the lateral line to 'hearing' in fish.
    Higgs DM; Radford CA
    J Exp Biol; 2013 Apr; 216(Pt 8):1484-90. PubMed ID: 23264489
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Question of reference frames: visual direction-selective neurons in the accessory optic system of goldfish.
    Masseck OA; Hoffmann KP
    J Neurophysiol; 2009 Nov; 102(5):2781-9. PubMed ID: 19710380
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A hydrodynamic topographic map in the midbrain of goldfish Carassius auratus.
    Plachta DT; Hanke W; Bleckmann H
    J Exp Biol; 2003 Oct; 206(Pt 19):3479-86. PubMed ID: 12939378
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sensory convergence solves a motion ambiguity problem.
    Shaikh AG; Green AM; Ghasia FF; Newlands SD; Dickman JD; Angelaki DE
    Curr Biol; 2005 Sep; 15(18):1657-62. PubMed ID: 16169488
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Avoiding spectral leakage in objective detection of auditory steady-state evoked responses in the inferior colliculus of rat using coherence.
    Felix LB; Moraes JE; Miranda de Sá AM; Yehia HC; Moraes MF
    J Neurosci Methods; 2005 Jun; 144(2):249-55. PubMed ID: 15910985
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spectral integration in primary auditory cortex: laminar processing of afferent input, in vivo and in vitro.
    Kaur S; Rose HJ; Lazar R; Liang K; Metherate R
    Neuroscience; 2005; 134(3):1033-45. PubMed ID: 15979241
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Representation of echo roughness and its relationship to amplitude-modulation processing in the bat auditory midbrain.
    Borina F; Firzlaff U; Schuller G; Wiegrebe L
    Eur J Neurosci; 2008 May; 27(10):2724-32. PubMed ID: 18547252
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An integrative neural network for detecting inertial motion and head orientation.
    Green AM; Angelaki DE
    J Neurophysiol; 2004 Aug; 92(2):905-25. PubMed ID: 15056677
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of a red-tide toxin on fish hearing.
    Lu Z; Tomchik SM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Nov; 188(10):807-13. PubMed ID: 12466956
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.