BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 12012342)

  • 1. Combining mutations in HIV-1 protease to understand mechanisms of resistance.
    Mahalingam B; Boross P; Wang YF; Louis JM; Fischer CC; Tozser J; Harrison RW; Weber IT
    Proteins; 2002 Jul; 48(1):107-16. PubMed ID: 12012342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and kinetic analysis of drug resistant mutants of HIV-1 protease.
    Mahalingam B; Louis JM; Reed CC; Adomat JM; Krouse J; Wang YF; Harrison RW; Weber IT
    Eur J Biochem; 1999 Jul; 263(1):238-45. PubMed ID: 10429209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural implications of drug-resistant mutants of HIV-1 protease: high-resolution crystal structures of the mutant protease/substrate analogue complexes.
    Mahalingam B; Louis JM; Hung J; Harrison RW; Weber IT
    Proteins; 2001 Jun; 43(4):455-64. PubMed ID: 11340661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular analysis of the HIV-1 resistance development: enzymatic activities, crystal structures, and thermodynamics of nelfinavir-resistant HIV protease mutants.
    Kozísek M; Bray J; Rezácová P; Sasková K; Brynda J; Pokorná J; Mammano F; Rulísek L; Konvalinka J
    J Mol Biol; 2007 Dec; 374(4):1005-16. PubMed ID: 17977555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular basis for substrate recognition and drug resistance from 1.1 to 1.6 angstroms resolution crystal structures of HIV-1 protease mutants with substrate analogs.
    Tie Y; Boross PI; Wang YF; Gaddis L; Liu F; Chen X; Tozser J; Harrison RW; Weber IT
    FEBS J; 2005 Oct; 272(20):5265-77. PubMed ID: 16218957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the HIV-1 protease nelfinavir resistance mutation D30N in subtypes B and C through molecular dynamics simulations.
    Soares RO; Batista PR; Costa MG; Dardenne LE; Pascutti PG; Soares MA
    J Mol Graph Model; 2010 Sep; 29(2):137-47. PubMed ID: 20541446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HIV-1 protease-substrate coevolution in nelfinavir resistance.
    Kolli M; Ozen A; Kurt-Yilmaz N; Schiffer CA
    J Virol; 2014 Jul; 88(13):7145-54. PubMed ID: 24719428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amprenavir complexes with HIV-1 protease and its drug-resistant mutants altering hydrophobic clusters.
    Shen CH; Wang YF; Kovalevsky AY; Harrison RW; Weber IT
    FEBS J; 2010 Sep; 277(18):3699-714. PubMed ID: 20695887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of an in vivo HIV-1 protease mutant in complex with saquinavir: insights into the mechanisms of drug resistance.
    Hong L; Zhang XC; Hartsuck JA; Tang J
    Protein Sci; 2000 Oct; 9(10):1898-904. PubMed ID: 11106162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structures of HIV protease V82A and L90M mutants reveal changes in the indinavir-binding site.
    Mahalingam B; Wang YF; Boross PI; Tozser J; Louis JM; Harrison RW; Weber IT
    Eur J Biochem; 2004 Apr; 271(8):1516-24. PubMed ID: 15066177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-evolution of nelfinavir-resistant HIV-1 protease and the p1-p6 substrate.
    Kolli M; Lastere S; Schiffer CA
    Virology; 2006 Apr; 347(2):405-9. PubMed ID: 16430939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Basis of Why Nelfinavir-Resistant D30N Mutant of HIV-1 Protease Remains Susceptible to Saquinavir.
    Prashar V; Bihani SC; Ferrer JL; Hosur MV
    Chem Biol Drug Des; 2015 Sep; 86(3):302-8. PubMed ID: 25487655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of drug resistance revealed by the crystal structure of the unliganded HIV-1 protease with F53L mutation.
    Liu F; Kovalevsky AY; Louis JM; Boross PI; Wang YF; Harrison RW; Weber IT
    J Mol Biol; 2006 May; 358(5):1191-9. PubMed ID: 16569415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effectiveness of nonpeptide clinical inhibitor TMC-114 on HIV-1 protease with highly drug resistant mutations D30N, I50V, and L90M.
    Kovalevsky AY; Tie Y; Liu F; Boross PI; Wang YF; Leshchenko S; Ghosh AK; Harrison RW; Weber IT
    J Med Chem; 2006 Feb; 49(4):1379-87. PubMed ID: 16480273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Within-host co-evolution of Gag P453L and protease D30N/N88D demonstrates virological advantage in a highly protease inhibitor-exposed HIV-1 case.
    Shibata J; Sugiura W; Ode H; Iwatani Y; Sato H; Tsang H; Matsuda M; Hasegawa N; Ren F; Tanaka H
    Antiviral Res; 2011 Apr; 90(1):33-41. PubMed ID: 21338625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interference between D30N and L90M in selection and development of protease inhibitor-resistant human immunodeficiency virus type 1.
    Sugiura W; Matsuda Z; Yokomaku Y; Hertogs K; Larder B; Oishi T; Okano A; Shiino T; Tatsumi M; Matsuda M; Abumi H; Takata N; Shirahata S; Yamada K; Yoshikura H; Nagai Y
    Antimicrob Agents Chemother; 2002 Mar; 46(3):708-15. PubMed ID: 11850252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A major role for a set of non-active site mutations in the development of HIV-1 protease drug resistance.
    Muzammil S; Ross P; Freire E
    Biochemistry; 2003 Jan; 42(3):631-8. PubMed ID: 12534275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Determinants of Epistasis in HIV-1 Protease: Elucidating the Interdependence of L89V and L90M Mutations in Resistance.
    Henes M; Kosovrasti K; Lockbaum GJ; Leidner F; Nachum GS; Nalivaika EA; Bolon DNA; Kurt Yilmaz N; Schiffer CA; Whitfield TW
    Biochemistry; 2019 Sep; 58(35):3711-3726. PubMed ID: 31386353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallographic analysis of human immunodeficiency virus 1 protease with an analog of the conserved CA-p2 substrate -- interactions with frequently occurring glutamic acid residue at P2' position of substrates.
    Weber IT; Wu J; Adomat J; Harrison RW; Kimmel AR; Wondrak EM; Louis JM
    Eur J Biochem; 1997 Oct; 249(2):523-30. PubMed ID: 9370363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug-resistant HIV-1 proteases identify enzyme residues important for substrate selection and catalytic rate.
    Ridky TW; Kikonyogo A; Leis J; Gulnik S; Copeland T; Erickson J; Wlodawer A; Kurinov I; Harrison RW; Weber IT
    Biochemistry; 1998 Sep; 37(39):13835-45. PubMed ID: 9753473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.