These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
549 related articles for article (PubMed ID: 12012354)
1. Spin densities in two-component relativistic density functional calculations: noncollinear versus collinear approach. Van Wüllen C J Comput Chem; 2002 Jun; 23(8):779-85. PubMed ID: 12012354 [TBL] [Abstract][Full Text] [Related]
2. Relativistic all-electron two-component self-consistent density functional calculations including one-electron scalar and spin-orbit effects. Peralta JE; Scuseria GE J Chem Phys; 2004 Apr; 120(13):5875-81. PubMed ID: 15267469 [TBL] [Abstract][Full Text] [Related]
3. Gradients for two-component quasirelativistic methods. Application to dihalogenides of element 116. van Wüllen C; Langermann N J Chem Phys; 2007 Mar; 126(11):114106. PubMed ID: 17381195 [TBL] [Abstract][Full Text] [Related]
4. Valence excitation energies of alkenes, carbonyl compounds, and azabenzenes by time-dependent density functional theory: linear response of the ground state compared to collinear and noncollinear spin-flip TDDFT with the Tamm-Dancoff approximation. Isegawa M; Truhlar DG J Chem Phys; 2013 Apr; 138(13):134111. PubMed ID: 23574212 [TBL] [Abstract][Full Text] [Related]
5. Calculation of zero-field splitting parameters: comparison of a two-component noncolinear spin-density-functional method and a one-component perturbational approach. Reviakine R; Arbuznikov AV; Tremblay JC; Remenyi C; Malkina OL; Malkin VG; Kaupp M J Chem Phys; 2006 Aug; 125(5):054110. PubMed ID: 16942206 [TBL] [Abstract][Full Text] [Related]
6. Relativistic spin-orbit effects on hyperfine coupling tensors by density-functional theory. Arbuznikov AV; Vaara J; Kaupp M J Chem Phys; 2004 Feb; 120(5):2127-39. PubMed ID: 15268351 [TBL] [Abstract][Full Text] [Related]
7. Relativistic two-component calculations of electronic g-tensors that include spin polarization. Malkin I; Malkina OL; Malkin VG; Kaupp M J Chem Phys; 2005 Dec; 123(24):244103. PubMed ID: 16396530 [TBL] [Abstract][Full Text] [Related]
8. Density functional study of multiplicity-changing valence and Rydberg excitations of p-block elements: delta self-consistent field, collinear spin-flip time-dependent density functional theory (DFT), and conventional time-dependent DFT. Yang K; Peverati R; Truhlar DG; Valero R J Chem Phys; 2011 Jul; 135(4):044118. PubMed ID: 21806101 [TBL] [Abstract][Full Text] [Related]
9. Role of noncollinear magnetization for the first-order electric-dipole hyperpolarizability at the four-component Kohn-Sham density functional theory level. Bast R; Saue T; Henriksson J; Norman P J Chem Phys; 2009 Jan; 130(2):024109. PubMed ID: 19154021 [TBL] [Abstract][Full Text] [Related]
10. Spin-spin contributions to the zero-field splitting tensor in organic triplets, carbenes and biradicals-a density functional and ab initio study. Sinnecker S; Neese F J Phys Chem A; 2006 Nov; 110(44):12267-75. PubMed ID: 17078624 [TBL] [Abstract][Full Text] [Related]
11. Comparative study of relativistic density functional methods applied to actinide species AcO(2)(2+) and AcF(6) for Ac = U, Np. García-Hernández M; Lauterbach C; Krüger S; Matveev A; Rösch N J Comput Chem; 2002 Jun; 23(8):834-46. PubMed ID: 12012360 [TBL] [Abstract][Full Text] [Related]
12. Magnetic anisotropy from density functional calculations. Comparison of different approaches: Mn12O12 acetate as a test case. van Wüllen C J Chem Phys; 2009 May; 130(19):194109. PubMed ID: 19466823 [TBL] [Abstract][Full Text] [Related]
13. Orbital- and state-dependent functionals in density-functional theory. Görling A J Chem Phys; 2005 Aug; 123(6):62203. PubMed ID: 16122289 [TBL] [Abstract][Full Text] [Related]
14. The calculation of excitation energies based on the relativistic two-component zeroth-order regular approximation and time-dependent density-functional with full use of symmetry. Wang F; Ziegler T; van Lenthe E; van Gisbergen S; Baerends EJ J Chem Phys; 2005 May; 122(20):204103. PubMed ID: 15945709 [TBL] [Abstract][Full Text] [Related]
15. Testing Noncollinear Spin-Flip, Collinear Spin-Flip, and Conventional Time-Dependent Density Functional Theory for Predicting Electronic Excitation Energies of Closed-Shell Atoms. Xu X; Yang KR; Truhlar DG J Chem Theory Comput; 2014 May; 10(5):2070-84. PubMed ID: 26580534 [TBL] [Abstract][Full Text] [Related]
16. Influence of molecular geometry, exchange-correlation functional, and solvent effects in the modeling of vertical excitation energies in phthalocyanines using time-dependent density functional theory (TDDFT) and polarized continuum model TDDFT methods: can modern computational chemistry methods explain experimental controversies? Nemykin VN; Hadt RG; Belosludov RV; Mizuseki H; Kawazoe Y J Phys Chem A; 2007 Dec; 111(50):12901-13. PubMed ID: 18004829 [TBL] [Abstract][Full Text] [Related]
17. A simplified relativistic time-dependent density-functional theory formalism for the calculations of excitation energies including spin-orbit coupling effect. Wang F; Ziegler T J Chem Phys; 2005 Oct; 123(15):154102. PubMed ID: 16252937 [TBL] [Abstract][Full Text] [Related]
18. Legendre-transform functionals for spin-density-functional theory. Ayers PW; Yang W J Chem Phys; 2006 Jun; 124(22):224108. PubMed ID: 16784264 [TBL] [Abstract][Full Text] [Related]
19. Noncollinear Spin States for Density Functional Calculations of Open-Shell and Multi-Configurational Systems: Dissociation of MnO and NiO and Barrier Heights of O3, BeH2, and H4. Luo S; Truhlar DG J Chem Theory Comput; 2013 Dec; 9(12):5349-55. PubMed ID: 26592272 [TBL] [Abstract][Full Text] [Related]
20. Accurate and efficient treatment of two-electron contributions in quasirelativistic high-order Douglas-Kroll density-functional calculations. van Wüllen C; Michauk C J Chem Phys; 2005 Nov; 123(20):204113. PubMed ID: 16351246 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]