These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 12012373)

  • 21. Time course of embryonic midbrain and thalamic auditory connection development in mice as revealed by carbocyanine dye tracing.
    Gurung B; Fritzsch B
    J Comp Neurol; 2004 Nov; 479(3):309-27. PubMed ID: 15457503
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Laminar inputs from dorsal cochlear nucleus and ventral cochlear nucleus to the central nucleus of the inferior colliculus: two patterns of convergence.
    Malmierca MS; Saint Marie RL; Merchan MA; Oliver DL
    Neuroscience; 2005; 136(3):883-94. PubMed ID: 16344158
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatiotemporal patterns of neuronal programmed cell death during postnatal development of the gerbil cochlea.
    Echteler SM; Magardino T; Rontal M
    Brain Res Dev Brain Res; 2005 Jun; 157(2):192-200. PubMed ID: 15939482
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential expression of Eph receptors and ephrins in the cochlear ganglion and eighth cranial nerve of the chick embryo.
    Siddiqui SA; Cramer KS
    J Comp Neurol; 2005 Feb; 482(4):309-19. PubMed ID: 15669077
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spontaneous discharge patterns in cochlear spiral ganglion cells before the onset of hearing in cats.
    Jones TA; Leake PA; Snyder RL; Stakhovskaya O; Bonham B
    J Neurophysiol; 2007 Oct; 98(4):1898-908. PubMed ID: 17686914
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Connections of cat auditory cortex: I. Thalamocortical system.
    Lee CC; Winer JA
    J Comp Neurol; 2008 Apr; 507(6):1879-900. PubMed ID: 18271026
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neurod1 Is Essential for the Primary Tonotopic Organization and Related Auditory Information Processing in the Midbrain.
    Macova I; Pysanenko K; Chumak T; Dvorakova M; Bohuslavova R; Syka J; Fritzsch B; Pavlinkova G
    J Neurosci; 2019 Feb; 39(6):984-1004. PubMed ID: 30541910
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional organization of the cochlear nucleus of rufous horseshoe bats (Rhinolophus rouxi): frequencies and internal connections are arranged in slabs.
    Feng AS; Vater M
    J Comp Neurol; 1985 May; 235(4):529-53. PubMed ID: 3998222
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Postnatal expression of neurotrophic factors accessible to spiral ganglion neurons in the auditory system of adult hearing and deafened rats.
    Bailey EM; Green SH
    J Neurosci; 2014 Sep; 34(39):13110-26. PubMed ID: 25253857
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intrinsic connections within and between cochlear nucleus subdivisions in cat.
    Snyder RL; Leake PA
    J Comp Neurol; 1988 Dec; 278(2):209-25. PubMed ID: 3230161
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Auditory system development: primary auditory neurons and their targets.
    Rubel EW; Fritzsch B
    Annu Rev Neurosci; 2002; 25():51-101. PubMed ID: 12052904
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Central trajectories of type II (thin) fibers of the auditory nerve in cats.
    Morgan YV; Ryugo DK; Brown MC
    Hear Res; 1994 Sep; 79(1-2):74-82. PubMed ID: 7806486
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Auditory brainstem of the ferret: effects of unilateral cochlear lesions on cochlear nucleus volume and projections to the inferior colliculus.
    Moore DR; Kowalchuk NE
    J Comp Neurol; 1988 Jun; 272(4):503-15. PubMed ID: 2843582
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Auditory brainstem of the ferret: long survival following cochlear removal progressively changes projections from the cochlear nucleus to the inferior colliculus.
    Moore DR
    J Comp Neurol; 1994 Jan; 339(2):301-10. PubMed ID: 7507942
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancement of neural synchronization in the anteroventral cochlear nucleus. I. Responses to tones at the characteristic frequency.
    Joris PX; Carney LH; Smith PH; Yin TC
    J Neurophysiol; 1994 Mar; 71(3):1022-36. PubMed ID: 8201399
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Postnatal development of differential projections from the caudal and rostral motor cortex subregions.
    Li Q; Martin JH
    Exp Brain Res; 2000 Sep; 134(2):187-98. PubMed ID: 11037285
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Organization of the disynaptic pathway from the anteroventral cochlear nucleus to the lateral superior olivary nucleus in the ferret.
    Henkel CK; Gabriele ML
    Anat Embryol (Berl); 1999 Feb; 199(2):149-60. PubMed ID: 9930621
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rhythmic discharge properties of caudal cochlear nucleus neurons during postnatal development in cats.
    Walsh EJ; McGee J
    Hear Res; 1988 Nov; 36(2-3):233-47. PubMed ID: 2905360
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The molecular basis of making spiral ganglion neurons and connecting them to hair cells of the organ of Corti.
    Yang T; Kersigo J; Jahan I; Pan N; Fritzsch B
    Hear Res; 2011 Aug; 278(1-2):21-33. PubMed ID: 21414397
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Serotonin projection patterns to the cochlear nucleus.
    Thompson AM; Thompson GC
    Brain Res; 2001 Jul; 907(1-2):195-207. PubMed ID: 11430903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.