These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 12012413)

  • 1. Diastereoselective noncovalent synthesis of hydrogen-bonded double-rosette assemblies.
    Prins LJ; Hulst R; Timmerman P; Reinhoudt DN
    Chemistry; 2002 May; 8(10):2288-301. PubMed ID: 12012413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enantioselective noncovalent synthesis of hydrogen-bonded double-rosette assemblies.
    Prins LJ; Verhage JJ; De Jong F; Timmerman P; Reinhoudt DN
    Chemistry; 2002 May; 8(10):2302-13. PubMed ID: 12012414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amplification of chirality: the "sergeants and soldiers" principle applied to dynamic hydrogen-bonded assemblies.
    Prins LJ; Timmerman P; Reinhoudt DN
    J Am Chem Soc; 2001 Oct; 123(42):10153-63. PubMed ID: 11603964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enantioselective formation of a dynamic hydrogen-bonded assembly based on the chiral memory concept.
    Ishi-I T; Crego-Calama M; Timmerman P; Reinhoudt DN; Shinkai S
    J Am Chem Soc; 2002 Dec; 124(49):14631-41. PubMed ID: 12465974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An enantiomerically pure hydrogen-bonded assembly.
    Prins LJ; De Jong F; Timmerman P; Reinhoudt DN
    Nature; 2000 Nov; 408(6809):181-4. PubMed ID: 11089967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel type of hydrogen-bonded assemblies based on the melamine.cyanuric acid motif.
    Arduini M; Crego-Calama M; Timmerman P; Reinhoudt DN
    J Org Chem; 2003 Feb; 68(3):1097-106. PubMed ID: 12558440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic stabilities of linear and crinkled tapes and cyclic rosettes in melamine--cyanurate assemblies: a model description.
    Bielejewska AG; Marjo CE; Prins LJ; Timmerman P; de Jong F; Reinhoudt DN
    J Am Chem Soc; 2001 Aug; 123(31):7518-33. PubMed ID: 11480972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amplification of chirality in hydrogen-bonded tetrarosette helices.
    Mateos-Timoneda MA; Crego-Calama M; Reinhoudt DN
    Chemistry; 2006 Mar; 12(9):2630-8. PubMed ID: 16355437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic stability of hydrogen-bonded nanostructures: a calorimetric study.
    ten Cate MG; Huskens J; Crego-Calama M; Reinhoudt DN
    Chemistry; 2004 Aug; 10(15):3632-9. PubMed ID: 15281146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competitive chiral induction in a 2D molecular assembly: Intrinsic chirality versus coadsorber-induced chirality.
    Chen T; Li SY; Wang D; Wan LJ
    Sci Adv; 2017 Nov; 3(11):e1701208. PubMed ID: 29119137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noncovalent Assembly of a Fifteen-Component Hydrogen-Bonded Nanostructure.
    Jolliffe KA; Timmerman P; Reinhoudt DN
    Angew Chem Int Ed Engl; 1999 Apr; 38(7):933-937. PubMed ID: 29711872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth of individual hydrogen-bonded nanostructures on gold monolayers.
    Garcia-Lopez JJ; Zapotoczny S; Timmerman P; van Veggel FC; Vancso GJ; Crego-Calama M; Reinhoudt DN
    Chem Commun (Camb); 2003 Feb; (3):352-3. PubMed ID: 12613608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chiral supramolecular assemblies of a squaraine dye in solution and thin films: concentration-, temperature-, and solvent-induced chirality inversion.
    Jyothish K; Hariharan M; Ramaiah D
    Chemistry; 2007; 13(20):5944-51. PubMed ID: 17436354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic stabilities of double, tetra-, and hexarosette hydrogen-bonded assemblies.
    Prins LJ; Neuteboom EE; Paraschiv V; Crego-Calama M; Timmerman P; Reinhoudt DN
    J Org Chem; 2002 Jul; 67(14):4808-20. PubMed ID: 12098292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembly and stability of double rosette nanostructures with biological functionalities.
    ten Cate MG; Omerović M; Oshovsky GV; Crego-Calama M; Reinhoudt DN
    Org Biomol Chem; 2005 Oct; 3(20):3727-33. PubMed ID: 16211109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial organization of achiral porphyrins via unidirectional compression: a general method for chiroptical porphyrin assemblies of selected chirality.
    Zhang X; Wang Y; Chen P; Rong Y; Liu M
    Phys Chem Chem Phys; 2016 May; 18(20):14023-9. PubMed ID: 27156996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational construction of perylene bisimide columnar superstructures with a biased helical sense.
    Seki T; Asano A; Seki S; Kikkawa Y; Murayama H; Karatsu T; Kitamura A; Yagai S
    Chemistry; 2011 Mar; 17(13):3598-608. PubMed ID: 21365708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dimensionality control of vapochromic hydrogen-bonded proton-transfer assemblies composed of a bis(hydrazone)iron(II) complex.
    Chang M; Kobayashi A; Nakajima K; Chang HC; Kato M
    Inorg Chem; 2011 Sep; 50(17):8308-17. PubMed ID: 21800867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supramolecular assembly of achiral alkynylplatinum(II) complexes and carboxylic β-1,3-glucan into different helical handedness stabilized by Pt⋅⋅⋅Pt and/or π-π interactions.
    Chung CY; Tamaru S; Shinkai S; Yam VW
    Chemistry; 2015 Mar; 21(14):5447-58. PubMed ID: 25693972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Counteranion Driven Homochiral Assembly of a Cationic C3-Symmetric Gelator through Ion-Pair Assisted Hydrogen Bond.
    Maity A; Gangopadhyay M; Basu A; Aute S; Babu SS; Das A
    J Am Chem Soc; 2016 Sep; 138(35):11113-6. PubMed ID: 27517868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.