BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 12012438)

  • 1. Secondary and tertiary structure of nucleotide-binding domain of alphasubunit of Na+/K+-ATPase.
    Hofbauerová K; Kopecký V; Ettrich R; Ettrichová O; Amler E
    Biopolymers; 2002; 67(4-5):242-6. PubMed ID: 12012438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The isolated H4-H5 cytoplasmic loop of Na,K-ATPase overexpressed in Escherichia coli retains its ability to bind ATP.
    Obsil T; Merola F; Lewit-Bentley A; Amler E
    Gen Physiol Biophys; 1998 Jun; 17 Suppl 1():52-5. PubMed ID: 9789756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The hydrogen bonds between Arg423 and Glu472 and other key residues, Asp443, Ser477, and Pro489, are responsible for the formation and a different positioning of TNP-ATP and ATP within the nucleotide-binding site of Na(+)/K(+)-ATPase.
    Lánský Z; Kubala M; Ettrich R; Kutý M; Plásek J; Teisinger J; Schoner W; Amler E
    Biochemistry; 2004 Jul; 43(26):8303-11. PubMed ID: 15222743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. D443 of the N domain of Na+,K+-ATPase interacts with the ATP-Mg2+ complex, possibly via a second Mg2+ ion.
    Strugatsky D; Gottschalk KE; Goldshleger R; Karlish SJ
    Biochemistry; 2005 Dec; 44(49):15961-9. PubMed ID: 16331955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP-induced conformational changes of the nucleotide-binding domain of Na,K-ATPase.
    Hilge M; Siegal G; Vuister GW; Güntert P; Gloor SM; Abrahams JP
    Nat Struct Biol; 2003 Jun; 10(6):468-74. PubMed ID: 12730684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional modules of KdpB, the catalytic subunit of the Kdp-ATPase from Escherichia coli.
    Bramkamp M; Altendorf K
    Biochemistry; 2004 Sep; 43(38):12289-96. PubMed ID: 15379567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eight amino acids form the ATP recognition site of Na(+)/K(+)-ATPase.
    Kubala M; Teisinger J; Ettrich R; Hofbauerová K; Kopecký V; Baumruk V; Krumscheid R; Plásek J; Schoner W; Amler E
    Biochemistry; 2003 Jun; 42(21):6446-52. PubMed ID: 12767226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP-binding is stabilized by a stacking interaction within the binding site of Na+/K+ -ATPase.
    Hofbauerová K; Kopecký V; Ettrich R; Kubala M; Teisinger J; Amler E
    Biochem Biophys Res Commun; 2003 Jun; 306(2):416-20. PubMed ID: 12804579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of the sodium-potassium pump.
    Morth JP; Pedersen BP; Toustrup-Jensen MS; Sørensen TL; Petersen J; Andersen JP; Vilsen B; Nissen P
    Nature; 2007 Dec; 450(7172):1043-9. PubMed ID: 18075585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP binding properties of the soluble part of the KdpC subunit from the Escherichia coli K(+)-transporting KdpFABC P-type ATPase.
    Ahnert F; Schmid R; Altendorf K; Greie JC
    Biochemistry; 2006 Sep; 45(36):11038-46. PubMed ID: 16953591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Residues within transmembrane domains 4 and 6 of the Na,K-ATPase alpha subunit are important for Na+ selectivity.
    Sánchez G; Blanco G
    Biochemistry; 2004 Jul; 43(28):9061-74. PubMed ID: 15248763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR studies of the fifth transmembrane segment of Na+,K+-ATPase reveals a non-helical ion-binding region.
    Underhaug J; Jakobsen LO; Esmann M; Malmendal A; Nielsen NC
    FEBS Lett; 2006 Sep; 580(20):4777-83. PubMed ID: 16904671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicted alterations in tertiary structure of the N-terminus of Na(+)/K(+)-ATPase alpha-subunit caused by phosphorylation or acidic replacement of the PKC phosphorylation site Ser-23.
    Brandt W; Anders A; Vasilets LA
    Cell Biochem Biophys; 2002; 37(2):83-95. PubMed ID: 12482133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inter-domain motions of the N-domain of the KdpFABC complex, a P-type ATPase, are not driven by ATP-induced conformational changes.
    Haupt M; Bramkamp M; Coles M; Altendorf K; Kessler H
    J Mol Biol; 2004 Oct; 342(5):1547-58. PubMed ID: 15364580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel family of transmembrane proteins interacting with beta subunits of the Na,K-ATPase.
    Gorokhova S; Bibert S; Geering K; Heintz N
    Hum Mol Genet; 2007 Oct; 16(20):2394-410. PubMed ID: 17606467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The crustacean gill (Na+,K+)-ATPase: allosteric modulation of high- and low-affinity ATP-binding sites by sodium and potassium.
    Masui DC; Silva EC; Mantelatto FL; McNamara JC; Barrabin H; Scofano HM; Fontes CF; Furriel RP; Leone FA
    Arch Biochem Biophys; 2008 Nov; 479(2):139-44. PubMed ID: 18796291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational analysis of Na,K-ATPase in drug-protein complexes.
    Neault JF; Diamantoglou S; Nafisi Sh; Tajmir-Riahi HA
    J Photochem Photobiol B; 2008 May; 91(2-3):167-74. PubMed ID: 18374596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nucleotide-binding domain of the Zn2+-transporting P-type ATPase from Escherichia coli carries a glycine motif that may be involved in binding of ATP.
    Okkeri J; Laakkonen L; Haltia T
    Biochem J; 2004 Jan; 377(Pt 1):95-105. PubMed ID: 14510639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional significance of the shark Na,K-ATPase N-terminal domain. Is the structurally variable N-Terminus involved in tissue-specific regulation by FXYD proteins?
    Cornelius F; Mahmmoud YA; Meischke L; Cramb G
    Biochemistry; 2005 Oct; 44(39):13051-62. PubMed ID: 16185073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The M4M5 cytoplasmic loop of the Na,K-ATPase, overexpressed in Escherichia coli, binds nucleoside triphosphates with the same selectivity as the intact native protein.
    Gatto C; Wang AX; Kaplan JH
    J Biol Chem; 1998 Apr; 273(17):10578-85. PubMed ID: 9553118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.