These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 1201292)

  • 1. [Instability and excitation propagation in a catalytic reaction model. I. Model of a system with concentrated parameters].
    Zaikin AN
    Biofizika; 1975; 20(4):616-21. PubMed ID: 1201292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Instability and excitation propagation in a catalytic reaction model. II. Distributed system model].
    Zaikin AN
    Biofizika; 1975; 20(5):772-7. PubMed ID: 1203262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Instability and propagation of waves of excitation in a model of a catalytic reaction. III. Non-trivial regimes of propagation of excitation].
    Zaĭkin AN; Kokoz IuM
    Biofizika; 1977; 22(1):113-6. PubMed ID: 849489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chaos in an enzyme reaction.
    Olsen LF; Degn H
    Nature; 1977 May; 267(5607):177-8. PubMed ID: 16073439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A quasistationary analysis of a stochastic chemical reaction: Keizer's paradox.
    Vellela M; Qian H
    Bull Math Biol; 2007 Jul; 69(5):1727-46. PubMed ID: 17318672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scalar modeling and analysis of a 3D biochemical reaction model.
    Maquet J; Letellier C; Aguirre LA
    J Theor Biol; 2004 Jun; 228(3):421-30. PubMed ID: 15135040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Rate of excitation propagation in a reduced Hodgkins-Huxley model. III. Integrodifferential equations].
    Pastushenko VF; Chizmadzhev IuA; Markin VS
    Biofizika; 1975; 20(6):1078-82. PubMed ID: 1203296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the kinetics of enzymic reactions in mainly solid reaction mixtures.
    Halling PJ; Wilson SK; Jacobs R; McKee S; Coles CW
    Biotechnol Prog; 2003; 19(4):1228-37. PubMed ID: 12892485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling and kinetic analysis of the reaction system using whole cells with separately and co-expressed D-hydantoinase and N-carbamoylase.
    Park JH; Oh KH; Lee DC; Kim HS
    Biotechnol Bioeng; 2002 Jun; 78(7):779-93. PubMed ID: 12001170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential transition-state stabilization in enzyme catalysis: quantum chemical analysis of interactions in the chorismate mutase reaction and prediction of the optimal catalytic field.
    Szefczyk B; Mulholland AJ; Ranaghan KE; Sokalski WA
    J Am Chem Soc; 2004 Dec; 126(49):16148-59. PubMed ID: 15584751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chelate effect and thermodynamics of metal complex formation in solution: a quantum chemical study.
    Vallet V; Wahlgren U; Grenthe I
    J Am Chem Soc; 2003 Dec; 125(48):14941-50. PubMed ID: 14640672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Dynamic theory of enzymatic catalysis].
    Chizmadzhev IuA; Pastushenko VF; Bliumenfel'd LA
    Biofizika; 1976; 21(2):208-13. PubMed ID: 1268264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic mechanism of the inverting N-acetylglucosaminyltransferase I: DFT quantum mechanical model of the reaction pathway and determination of the transition state structure.
    Tvaroska I; André I; Carver JP
    Glycobiology; 2003 Aug; 13(8):559-66. PubMed ID: 12672701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. All electron quantum chemical calculation of the entire enzyme system confirms a collective catalytic device in the chorismate mutase reaction.
    Ishida T; Fedorov DG; Kitaura K
    J Phys Chem B; 2006 Jan; 110(3):1457-63. PubMed ID: 16471697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulational instability in a purely nonlinear coupled complex Ginzburg-Landau equations through a nonlinear discrete transmission line.
    Ndzana F; Mohamadou A; Kofané TC
    Chaos; 2008 Dec; 18(4):043121. PubMed ID: 19123631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of biomass catalytic pyrolysis.
    Lu C; Song W; Lin W
    Biotechnol Adv; 2009; 27(5):583-7. PubMed ID: 19393731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A shifting specificity model for enzyme catalysis.
    Britt BM
    J Theor Biol; 1993 Sep; 164(2):181-90. PubMed ID: 8246515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions.
    Zhang F; Yeh GT; Parker JC; Brooks SC; Pace MN; Kim YJ; Jardine PM; Watson DB
    J Contam Hydrol; 2007 Jun; 92(1-2):10-32. PubMed ID: 17229488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transition-state ensemble in enzyme catalysis: possibility, reality, or necessity?
    Ma B; Kumar S; Tsai CJ; Hu Z; Nussinov R
    J Theor Biol; 2000 Apr; 203(4):383-97. PubMed ID: 10736215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction progress kinetic analysis: a powerful methodology for mechanistic studies of complex catalytic reactions.
    Blackmond DG
    Angew Chem Int Ed Engl; 2005 Jul; 44(28):4302-20. PubMed ID: 15997457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.