BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 1201297)

  • 1. [Comparative study of membrane-bound acetylcholinesterase in guinea pig and rabbit brains].
    Miliutin AA; Aksentsev SL; Baraĭ VN; Arinchin NI; Konev SV
    Biofizika; 1975; 20(4):638-41. PubMed ID: 1201297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Age changes in the allosteric properties of brain acetylcholinesterase].
    Miliutin AA; Okun' IM; Aksentsev SL; Arinchin NI; Konev SV
    Biofizika; 1976 Nov; 21(6):1120-2. PubMed ID: 1009209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The structural catalytic characteristics of brain acetylcholinesterase in rabbit postnatal ontogeny].
    Podosinovikova NP; Dolgo-Saburov VB
    Zh Evol Biokhim Fiziol; 1979; 15(1):54-8. PubMed ID: 95840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of edrophonium, eserine, decamethonium, d-tubocurarine, and gallamine on the kinetics of membrane-bound and solubilized eel acetylcholinesterase.
    Robaire B; Kato G
    Mol Pharmacol; 1975 Nov; 11(6):722-34. PubMed ID: 1207670
    [No Abstract]   [Full Text] [Related]  

  • 5. [Effect of bile and bile acids on monoamine oxidase and acetylcholinesterase activity in the jejunum of rabbits, guinea pigs and swine].
    Radymska-Wawrzyniak K; Studziński T
    Pol Arch Weter; 1987; 24(4):457-66. PubMed ID: 3697337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An inhibitory monoclonal antibody to rabbit brain acetylcholinesterase. Studies on interaction with the enzyme.
    Brimijoin S; Mintz KP; Prendergast FG
    Mol Pharmacol; 1985 Dec; 28(6):539-45. PubMed ID: 4079910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allosteric control of acetylcholinesterase activity by monoclonal antibodies.
    Saxena A; Hur R; Doctor BP
    Biochemistry; 1998 Jan; 37(1):145-54. PubMed ID: 9425034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformers of acetylcholinesterase: a mechanism of allosteric control.
    Taylor JL; Mayer RT; Himel CM
    Mol Pharmacol; 1994 Jan; 45(1):74-83. PubMed ID: 8302283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between parathion and paraoxon toxicokinetics, lung metabolic activity, and cholinesterase inhibition in guinea pig and rabbit lungs.
    Lessire F; Gustin P; Delaunois A; Bloden S; Nemmar A; Vargas M; Ansay M
    Toxicol Appl Pharmacol; 1996 Jun; 138(2):201-10. PubMed ID: 8658521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Comparative study of solubilized and membrane-bound acetylcholinesterase of sarcolemma].
    Diadiusha GL
    Biokhimiia; 1976 Apr; 41(4):692-8. PubMed ID: 1022294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An in vitro comparative study on the reactivation of nerve agent-inhibited guinea pig and human acetylcholinesterases by oximes.
    Luo C; Tong M; Chilukuri N; Brecht K; Maxwell DM; Saxena A
    Biochemistry; 2007 Oct; 46(42):11771-9. PubMed ID: 17900152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential effects of "peripheral" site ligands on Torpedo and chicken acetylcholinesterase.
    Eichler J; Anselment A; Sussman JL; Massoulié J; Silman I
    Mol Pharmacol; 1994 Feb; 45(2):335-40. PubMed ID: 8114681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain levels and acetylcholinesterase inhibition with galantamine and donepezil in rats, mice, and rabbits.
    Geerts H; Guillaumat PO; Grantham C; Bode W; Anciaux K; Sachak S
    Brain Res; 2005 Feb; 1033(2):186-93. PubMed ID: 15694923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonequilibrium analysis alters the mechanistic interpretation of inhibition of acetylcholinesterase by peripheral site ligands.
    Szegletes T; Mallender WD; Rosenberry TL
    Biochemistry; 1998 Mar; 37(12):4206-16. PubMed ID: 9521743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modification of acetylcholinesterase during adaptation to chronic, subacute paraoxon application in rat.
    Milatovic D; Dettbarn WD
    Toxicol Appl Pharmacol; 1996 Jan; 136(1):20-8. PubMed ID: 8560475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the oxime-induced reactivation of rhesus monkey, swine and guinea pig erythrocyte acetylcholinesterase following inhibition by sarin or paraoxon, using a perfusion model for the real-time determination of membrane-bound acetylcholinesterase activity.
    Herkert NM; Lallement G; Clarençon D; Thiermann H; Worek F
    Toxicology; 2009 Apr; 258(2-3):79-83. PubMed ID: 19428926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate.
    Johnson JL; Cusack B; Davies MP; Fauq A; Rosenberry TL
    Biochemistry; 2003 May; 42(18):5438-52. PubMed ID: 12731886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histochemical comparison of ovarian acetylcholinesterase and butyrylcholinesterase of guinea pig with those of rat, rabbit, cat, and dog.
    Chaffee VW; Link RP
    Am J Vet Res; 1974 Sep; 35(9):1255-8. PubMed ID: 4422684
    [No Abstract]   [Full Text] [Related]  

  • 19. In vitro inhibitory effect of aflatoxin B1 on acetylcholinesterase activity in mouse brain.
    Cometa MF; Lorenzini P; Fortuna S; Volpe MT; Meneguz A; Palmery M
    Toxicology; 2005 Jan; 206(1):125-35. PubMed ID: 15590113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate binding to the peripheral site of acetylcholinesterase initiates enzymatic catalysis. Substrate inhibition arises as a secondary effect.
    Szegletes T; Mallender WD; Thomas PJ; Rosenberry TL
    Biochemistry; 1999 Jan; 38(1):122-33. PubMed ID: 9890890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.