These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 12013131)
1. The agricultural dispersal-valley drift spray drift modeling system compared with pesticide drift data. Allwine KJ; Thistle HW; Teske ME; Anhold J Environ Toxicol Chem; 2002 May; 21(5):1085-90. PubMed ID: 12013131 [TBL] [Abstract][Full Text] [Related]
2. Validation of the AGDISP model for predicting airborne atrazine spray drift: A South African ground application case study. Nsibande SA; Dabrowski JM; van der Walt E; Venter A; Forbes PB Chemosphere; 2015 Nov; 138():454-61. PubMed ID: 26171732 [TBL] [Abstract][Full Text] [Related]
3. Modeling spray drift and runoff-related inputs of pesticides to receiving water. Zhang X; Luo Y; Goh KS Environ Pollut; 2018 Mar; 234():48-58. PubMed ID: 29156441 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of Watershed-Scale Simulations of In-Stream Pesticide Concentrations from Off-Target Spray Drift. Winchell MF; Pai N; Brayden BH; Stone C; Whatling P; Hanzas JP; Stryker JJ J Environ Qual; 2018 Jan; 47(1):79-87. PubMed ID: 29415099 [TBL] [Abstract][Full Text] [Related]
5. Spray drift as affected by meteorological conditions. Nuyttens D; Sonck B; de Schampheleire M; Steurbaut W; Baetens K; Verboven P; Nicolaï B; Ramon H Commun Agric Appl Biol Sci; 2005; 70(4):947-59. PubMed ID: 16628942 [TBL] [Abstract][Full Text] [Related]
6. Effect of the entrained air and initial droplet velocity on the release height parameter of a Gaussian spray drift model. Stainier C; Destain MF; Schiffers B; Lebeau F Commun Agric Appl Biol Sci; 2006; 71(2 Pt A):197-200. PubMed ID: 17390793 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of the AgDISP aerial spray algorithms in the AgDRIFT model. Bird SL; Perry SG; Ray SL; Teske ME Environ Toxicol Chem; 2002 Mar; 21(3):672-81. PubMed ID: 11878481 [TBL] [Abstract][Full Text] [Related]
8. Winds of change, developing a non-target plant bioassay employing field-based pesticide drift exposure: A case study with atrazine. Brain R; Goodwin G; Abi-Akar F; Lee B; Rodgers C; Flatt B; Lynn A; Kruger G; Perkins D Sci Total Environ; 2019 Aug; 678():239-252. PubMed ID: 31075591 [TBL] [Abstract][Full Text] [Related]
9. A pdpa laser-based measuring set-up for the characterisation of spray nozzles. Nuyttens D; Sonck B; de Schampheleire M; Steurbaut W; Baetens K; Verboven P; Nicolaï B; Ramon H Commun Agric Appl Biol Sci; 2005; 70(4):1023-35. PubMed ID: 16628951 [TBL] [Abstract][Full Text] [Related]
10. Measures to reduce pesticide spray drift in a small aquatic ecosystem in vineyard estate. Vischetti C; Cardinali A; Monaci E; Nicelli M; Ferrari F; Trevisan M; Capri E Sci Total Environ; 2008 Jan; 389(2-3):497-502. PubMed ID: 17936878 [TBL] [Abstract][Full Text] [Related]
11. Buffer zones for reducing pesticide drift to ditches and risks to aquatic organisms. de Snoo GR; de Wit PJ Ecotoxicol Environ Saf; 1998 Sep; 41(1):112-8. PubMed ID: 9756699 [TBL] [Abstract][Full Text] [Related]
12. Direct and indirect drift assessment means. Part 4: a comparative study. Nuyttens D; Baetens K; De Schampheleire M; Sonck B Commun Agric Appl Biol Sci; 2008; 73(4):769-74. PubMed ID: 19226827 [TBL] [Abstract][Full Text] [Related]
13. Spray drift reduction under Southern European conditions: a pilot study in the Ecopest Project in Greece. Kasiotis KM; Glass CR; Tsakirakis AN; Machera K Sci Total Environ; 2014 May; 479-480():132-7. PubMed ID: 24561292 [TBL] [Abstract][Full Text] [Related]
14. Off-target loss in ornamental nurseries with different spray techniques. Zhu H; Derksen RC; Krause CR; Zondag RH Commun Agric Appl Biol Sci; 2009; 74(1):25-36. PubMed ID: 20218508 [TBL] [Abstract][Full Text] [Related]
15. Examining the role of wind in human illness due to pesticide drift in Washington state, 2000-2015. Kasner EJ; Prado JB; Yost MG; Fenske RA Environ Health; 2021 Mar; 20(1):26. PubMed ID: 33722241 [TBL] [Abstract][Full Text] [Related]
16. Real-Time Monitoring of Spray Drift from Three Different Orchard Sprayers. Blanco MN; Fenske RA; Kasner EJ; Yost MG; Seto E; Austin E Chemosphere; 2019 May; 222():46-55. PubMed ID: 30690400 [TBL] [Abstract][Full Text] [Related]
17. AgDRIFT: a model for estimating near-field spray drift from aerial applications. Teske ME; Bird SL; Esterly DM; Curbishley TB; Ray SL; Perry SG Environ Toxicol Chem; 2002 Mar; 21(3):659-71. PubMed ID: 11878480 [TBL] [Abstract][Full Text] [Related]
18. Spray droplet size, drift potential, and risks to nontarget organisms from aerially applied glyphosate for coca control in Colombia. Hewitt AJ; Solomon KR; Marshall EJ J Toxicol Environ Health A; 2009; 72(15-16):921-9. PubMed ID: 19672760 [TBL] [Abstract][Full Text] [Related]