These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 12013792)

  • 21. In vivo analysis of mtDNA replication defects in yeast.
    Baruffini E; Ferrero I; Foury F
    Methods; 2010 Aug; 51(4):426-36. PubMed ID: 20206271
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NET1 and HFI1 genes of yeast mediate both chromosome maintenance and mitochondrial rho(-) mutagenesis.
    Koltovaya NA; Guerasimova AS; Tchekhouta IA; Devin AB
    Yeast; 2003 Aug; 20(11):955-71. PubMed ID: 12898711
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multipurpose transposon insertion libraries for large-scale analysis of gene function in yeast.
    Kumar A
    Methods Mol Biol; 2008; 416():117-29. PubMed ID: 18392964
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Relation between respiratory stability and resistance to the suppressive effect of rho+ strains of S. cerevisiae].
    Maqueda M; Valdivia E; Montoya E
    Microbiol Esp; 1985; 38(1-2):45-52. PubMed ID: 3913842
    [No Abstract]   [Full Text] [Related]  

  • 25. DNA recombination-initiation plays a role in the extremely biased inheritance of yeast [rho-] mitochondrial DNA that contains the replication origin ori5.
    Ling F; Hori A; Shibata T
    Mol Cell Biol; 2007 Feb; 27(3):1133-45. PubMed ID: 17116696
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insertional mutagenesis by Ty elements in Saccharomyces cerevisiae.
    Garfinkel DJ
    Methods Mol Biol; 1996; 53():227-37. PubMed ID: 8924984
    [No Abstract]   [Full Text] [Related]  

  • 27. [Production of thermostable bread baker's yeast by the induced mutagenesis technic].
    Demchanko LN; Kobrina IuP
    Mikrobiologiia; 1979; 48(5):892-5. PubMed ID: 388163
    [No Abstract]   [Full Text] [Related]  

  • 28. [Analysis of maintenance of redundant genetic structures in the yeast Saccharomyces cerevisiae: disomy and spontaneous mitochondrial rho(-)-mutability].
    Smirnova ME; Arman IP; Devin AB
    Genetika; 1994 Sep; 30(9):1184-93. PubMed ID: 8001801
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome-wide survey of non-essential genes required for slowed DNA synthesis-induced filamentous growth in yeast.
    Kang CM; Jiang YW
    Yeast; 2005 Jan; 22(2):79-90. PubMed ID: 15645503
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of 2-micron DNA on survival and mutagenesis in Saccharomyces cerevisiae.
    Nestmann ER; Kowbel DJ; Potter AA
    Can J Genet Cytol; 1986 Feb; 28(1):154-60. PubMed ID: 3084049
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rare-mating and cytoduction in Saccharomyces cerevisiae.
    Spencer JF; Spencer DM
    Methods Mol Biol; 1996; 53():39-44. PubMed ID: 8925000
    [No Abstract]   [Full Text] [Related]  

  • 32. Interaction between yeast mitochondrial and nuclear genomes: null alleles of RTG genes affect resistance to the alkaloid lycorine in rho0 petites of Saccharomyces cerevisiae.
    Del Giudice L; Massardo DR; Pontieri P; Wolf K
    Gene; 2005 Jul; 354():9-14. PubMed ID: 15893890
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae.
    Flagfeldt DB; Siewers V; Huang L; Nielsen J
    Yeast; 2009 Oct; 26(10):545-51. PubMed ID: 19681174
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Msh1p counteracts oxidative lesion-induced instability of mtDNA and stimulates mitochondrial recombination in Saccharomyces cerevisiae.
    Kaniak A; Dzierzbicki P; Rogowska AT; Malc E; Fikus M; Ciesla Z
    DNA Repair (Amst); 2009 Mar; 8(3):318-29. PubMed ID: 19056520
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transformation of Saccharomyces cerevisiae with nonhomologous DNA: illegitimate integration of transforming DNA into yeast chromosomes and in vivo ligation of transforming DNA to mitochondrial DNA sequences.
    Schiestl RH; Dominska M; Petes TD
    Mol Cell Biol; 1993 May; 13(5):2697-705. PubMed ID: 8386316
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The relative merits of the tetO2 and tetO7 promoter systems for the functional analysis of heterologous genes in yeast and a compilation of essential yeast genes with tetO2 promoter substitutions.
    Wishart JA; Osborn M; Gent ME; Yen K; Vujovic Z; Gitsham P; Zhang N; Ross Miller J; Oliver SG
    Yeast; 2006 Mar; 23(4):325-31. PubMed ID: 16544274
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Repair of oxidative damage in mitochondrial DNA of Saccharomyces cerevisiae: involvement of the MSH1-dependent pathway.
    Dzierzbicki P; Koprowski P; Fikus MU; Malc E; Ciesla Z
    DNA Repair (Amst); 2004 Apr; 3(4):403-11. PubMed ID: 15010316
    [TBL] [Abstract][Full Text] [Related]  

  • 38. HIM1, a new yeast Saccharomyces cerevisiae gene playing a role in control of spontaneous and induced mutagenesis.
    Kelberg EP; Kovaltsova SV; Alekseev SY; Fedorova IV; Gracheva LM; Evstukhina TA; Korolev VG
    Mutat Res; 2005 Oct; 578(1-2):64-78. PubMed ID: 15885712
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cytotoxicity and gene induction by some essential oils in the yeast Saccharomyces cerevisiae.
    Bakkali F; Averbeck S; Averbeck D; Zhiri A; Idaomar M
    Mutat Res; 2005 Aug; 585(1-2):1-13. PubMed ID: 15975845
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mitochondrial inheritance and fermentative : oxidative balance in hybrids between Saccharomyces cerevisiae and Saccharomyces uvarum.
    Solieri L; Antúnez O; Pérez-Ortín JE; Barrio E; Giudici P
    Yeast; 2008 Jul; 25(7):485-500. PubMed ID: 18615860
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.