These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 12014481)

  • 1. Lipofuscins and sclerotial differentiation in phytopathogenic fungi.
    Georgiou CD; Zees A
    Mycopathologia; 2002; 153(4):203-8. PubMed ID: 12014481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superoxide radical is involved in the sclerotial differentiation of filamentous phytopathogenic fungi: identification of a fungal xanthine oxidase.
    Papapostolou I; Georgiou CD
    Fungal Biol; 2010; 114(5-6):387-95. PubMed ID: 20943149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen peroxide is involved in the sclerotial differentiation of filamentous phytopathogenic fungi.
    Papapostolou I; Georgiou CD
    J Appl Microbiol; 2010 Dec; 109(6):1929-36. PubMed ID: 20681971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thiol redox state and oxidative stress affect sclerotial differentiation of the phytopathogenic fungi Sclerotium rolfsii and Sclerotinia sclerotiorum.
    Patsoukis N; Georgiou CD
    J Appl Microbiol; 2008 Jan; 104(1):42-50. PubMed ID: 17850300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of thiol redox state modulators on oxidative stress and sclerotial differentiation of the phytopathogenic fungus Rhizoctonia solani.
    Patsoukis N; Georgiou CD
    Arch Microbiol; 2007 Sep; 188(3):225-33. PubMed ID: 17429612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thiol redox state and related enzymes in sclerotium-forming filamentous phytopathogenic fungi.
    Patsoukis N; Georgiou DC
    Mycol Res; 2008 May; 112(Pt 5):602-10. PubMed ID: 18400483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of glutathione biosynthesis-related modulators on the thiol redox state enzymes and on sclerotial differentiation of filamentous phytopathogenic fungi.
    Patsoukis N; Georgiou CD
    Mycopathologia; 2007 Jun; 163(6):335-47. PubMed ID: 17387631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell proliferating and differentiating role of H2O2 in Sclerotium rolfsii and Sclerotinia sclerotiorum.
    Papapostolou I; Sideri M; Georgiou CD
    Microbiol Res; 2014; 169(7-8):527-32. PubMed ID: 24388556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beta-carotene production and sclerotial differentiation in Sclerotinia minor.
    Zervoudakis G; Tairis N; Salahas G; Georgiou CD
    Mycol Res; 2003 May; 107(Pt 5):624-31. PubMed ID: 12884961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological and molecular aspects of sclerotial development in the phytopathogenic fungus Sclerotinia sclerotiorum.
    Sousa Melo B; Voltan AR; Arruda W; Cardoso Lopes FA; Georg RC; Ulhoa CJ
    Microbiol Res; 2019 Dec; 229():126326. PubMed ID: 31493702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superoxide radical induces sclerotial differentiation in filamentous phytopathogenic fungi: a superoxide dismutase mimetics study.
    Papapostolou I; Georgiou CD
    Microbiology (Reading); 2010 Mar; 156(Pt 3):960-966. PubMed ID: 20007647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic Analysis Reveals the Importance of Exudates on Sclerotial Development in
    Tian J; Chen C; Sun H; Wang Z; Steinkellner S; Feng J; Liang Y
    J Agric Food Chem; 2021 Feb; 69(4):1430-1440. PubMed ID: 33481591
    [No Abstract]   [Full Text] [Related]  

  • 13. beta-Carotene production and its role in sclerotial differentiation of Sclerotium rolfsii.
    Georgiou CD; Zervoudakis G; Tairis N; Kornaros M
    Fungal Genet Biol; 2001 Oct; 34(1):11-20. PubMed ID: 11567548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early Secretory Pathway-Associated Proteins SsEmp24 and SsErv25 Are Involved in Morphogenesis and Pathogenicity in a Filamentous Phytopathogenic Fungus.
    Xie C; Shang Q; Mo C; Xiao Y; Wang G; Xie J; Jiang D; Xiao X
    mBio; 2021 Dec; 12(6):e0317321. PubMed ID: 34933451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Volatile compounds emitted by sclerotia of Sclerotinia minor, Sclerotinia sclerotiorum, and Sclerotium rolfsii.
    Fravel DR; Connick WJ; Grimm CC; Lloyd SW
    J Agric Food Chem; 2002 Jun; 50(13):3761-4. PubMed ID: 12059156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ascorbic acid might play a role in the sclerotial differentiation of Sclerotium rolfsii.
    Georgiou CD; Zervoudakis G; Petropoulou KP
    Mycologia; 2003; 95(2):308-16. PubMed ID: 21156616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of phenylthiourea on growth and sclerotial formation of Sclerotium rolfsii and Whetzelinia sclerotiorum.
    Le Tourneau D
    Can J Microbiol; 1976 Mar; 22(3):379-83. PubMed ID: 943219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolites contributing to Rhizoctonia solani AG-1-IA maturation and sclerotial differentiation revealed by UPLC-QTOF-MS metabolomics.
    Hu W; Pan X; Abbas HMK; Li F; Dong W
    PLoS One; 2017; 12(5):e0177464. PubMed ID: 28489938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of ascorbic acid role in the differentiation of sclerotia in Sclerotinia minor.
    Georgiou CD; Petropoulou KP
    Mycopathologia; 2002; 154(2):71-7. PubMed ID: 12086103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitory effects of stilbenes on the growth of three soybean pathogens in culture.
    Lygin AV; Hill CB; Pawlowski M; Zernova OV; Widholm JM; Hartman GL; Lozovaya VV
    Phytopathology; 2014 Aug; 104(8):843-50. PubMed ID: 24502206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.