BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 12015336)

  • 1. Increased concentrations of P(i) and lactic acid reduce creatine-stimulated respiration in muscle fibers.
    Walsh B; Tiivel T; Tonkonogi M; Sahlin K
    J Appl Physiol (1985); 2002 Jun; 92(6):2273-6. PubMed ID: 12015336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of phosphorylcreatine and creatine in the regulation of mitochondrial respiration in human skeletal muscle.
    Walsh B; Tonkonogi M; Söderlund K; Hultman E; Saks V; Sahlin K
    J Physiol; 2001 Dec; 537(Pt 3):971-8. PubMed ID: 11744769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endurance training induces muscle-specific changes in mitochondrial function in skinned muscle fibers.
    Burelle Y; Hochachka PW
    J Appl Physiol (1985); 2002 Jun; 92(6):2429-38. PubMed ID: 12015357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of phosphocreatine kinetics to determine the influence of creatine on muscle mitochondrial respiration: an in vivo 31P-MRS study of oral creatine ingestion.
    Smith SA; Montain SJ; Zientara GP; Fielding RA
    J Appl Physiol (1985); 2004 Jun; 96(6):2288-92. PubMed ID: 14978006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial function in human skeletal muscle is not impaired by high intensity exercise.
    Tonkonogi M; Walsh B; Tiivel T; Saks V; Sahlin K
    Pflugers Arch; 1999 Mar; 437(4):562-8. PubMed ID: 10089569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced mitochondrial sensitivity to creatine in rats bred for high aerobic capacity.
    Walsh B; Hooks RB; Hornyak JE; Koch LG; Britton SL; Hogan MC
    J Appl Physiol (1985); 2006 Jun; 100(6):1765-9. PubMed ID: 16424066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study of respiration kinetics and protein composition of skinned fibers from various types of rat muscle.
    Voloshchuk SG; Belikova YO; Klyushnik TP; Benevolensky DS; Saks VA
    Biochemistry (Mosc); 1998 Feb; 63(2):155-8. PubMed ID: 9526107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of regulation of mitochondrial respiration in vivo. An analysis of influence of ADP diffusion and possible role of cytoskeleton.
    Kay L; Li Z; Mericskay M; Olivares J; Tranqui L; Fontaine E; Tiivel T; Sikk P; Kaambre T; Samuel JL; Rappaport L; Usson Y; Leverve X; Paulin D; Saks VA
    Biochim Biophys Acta; 1997 Nov; 1322(1):41-59. PubMed ID: 9398078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial efficiency in rat skeletal muscle: influence of respiration rate, substrate and muscle type.
    Mogensen M; Sahlin K
    Acta Physiol Scand; 2005 Nov; 185(3):229-36. PubMed ID: 16218928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling in vivo creatine/phosphocreatine in vitro reveals divergent adaptations in human muscle mitochondrial respiratory control by ADP after acute and chronic exercise.
    Ydfors M; Hughes MC; Laham R; Schlattner U; Norrbom J; Perry CG
    J Physiol; 2016 Jun; 594(11):3127-40. PubMed ID: 26631938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of in vitro lactic acidosis and hypercapnia on respiratory activity of isolated rat brain mitochondria.
    Hillered L; Ernster L; Siesjö BK
    J Cereb Blood Flow Metab; 1984 Sep; 4(3):430-7. PubMed ID: 6470057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Actively phosphorylating mitochondria are more resistant to lactic acidosis than inactive mitochondria.
    Tonkonogi M; Sahlin K
    Am J Physiol; 1999 Aug; 277(2):C288-93. PubMed ID: 10444405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of skeletal muscle mitochondria respiration by adenine nucleotides: differential effect of ADP and ATP according to muscle contractile type in pigs.
    Gueguen N; Lefaucheur L; Fillaut M; Vincent A; Herpin P
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Feb; 140(2):287-97. PubMed ID: 15649776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Various properties of the creatine transport system and the location of creatine kinase in skeletal muscle mitochondria].
    Lipskaia TI; Goloveshkina VG
    Biokhimiia; 1975; 40(5):942-50. PubMed ID: 2328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial oxidative function in human saponin-skinned muscle fibres: effects of prolonged exercise.
    Tonkonogi M; Harris B; Sahlin K
    J Physiol; 1998 Jul; 510 ( Pt 1)(Pt 1):279-86. PubMed ID: 9625884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effects of creatine depletion on the regulation of enzyme activities and on creatine-stimulated mitochondrial respiration in skeletal muscle, heart, and brain.
    O'Gorman E; Beutner G; Wallimann T; Brdiczka D
    Biochim Biophys Acta; 1996 Sep; 1276(2):161-70. PubMed ID: 8816948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunosuppressive treatment affects cardiac and skeletal muscle mitochondria by the toxic effect of vehicle.
    Sanchez H; Bigard X; Veksler V; Mettauer B; Lampert E; Lonsdorfer J; Ventura-Clapier R
    J Mol Cell Cardiol; 2000 Feb; 32(2):323-31. PubMed ID: 10722807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Creatine supplementation increases glucose oxidation and AMPK phosphorylation and reduces lactate production in L6 rat skeletal muscle cells.
    Ceddia RB; Sweeney G
    J Physiol; 2004 Mar; 555(Pt 2):409-21. PubMed ID: 14724211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle creatine uptake and creatine transporter expression in response to creatine supplementation and depletion.
    Brault JJ; Abraham KA; Terjung RL
    J Appl Physiol (1985); 2003 Jun; 94(6):2173-80. PubMed ID: 12611762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular energetic units in red muscle cells.
    Saks VA; Kaambre T; Sikk P; Eimre M; Orlova E; Paju K; Piirsoo A; Appaix F; Kay L; Regitz-Zagrosek V; Fleck E; Seppet E
    Biochem J; 2001 Jun; 356(Pt 2):643-57. PubMed ID: 11368796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.