These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 12015359)

  • 1. Sympathetic restraint of muscle blood flow at the onset of dynamic exercise.
    Hamann JJ; Buckwalter JB; Valic Z; Clifford PS
    J Appl Physiol (1985); 2002 Jun; 92(6):2452-6. PubMed ID: 12015359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alpha-adrenergic receptor-mediated restraint of skeletal muscle blood flow during prolonged exercise.
    DeLorey DS; Hamann JJ; Kluess HA; Clifford PS; Buckwalter JB
    J Appl Physiol (1985); 2006 May; 100(5):1563-8. PubMed ID: 16410381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is active skeletal muscle functionally vasoconstricted during dynamic exercise in conscious dogs?
    O'Leary DS; Robinson ED; Butler JL
    Am J Physiol; 1997 Jan; 272(1 Pt 2):R386-91. PubMed ID: 9039033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle pump does not enhance blood flow in exercising skeletal muscle.
    Hamann JJ; Valic Z; Buckwalter JB; Clifford PS
    J Appl Physiol (1985); 2003 Jan; 94(1):6-10. PubMed ID: 12391132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carotid chemoreceptor modulation of regional blood flow distribution during exercise in health and chronic heart failure.
    Stickland MK; Miller JD; Smith CA; Dempsey JA
    Circ Res; 2007 May; 100(9):1371-8. PubMed ID: 17431189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sympathetic vasoconstriction in active skeletal muscles during dynamic exercise.
    Buckwalter JB; Mueller PJ; Clifford PS
    J Appl Physiol (1985); 1997 Nov; 83(5):1575-80. PubMed ID: 9375322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle metaboreflex-induced increases in cardiac sympathetic activity vasoconstrict the coronary vasculature.
    O'Leary DS; Sala-Mercado JA; Hammond RL; Ansorge EJ; Kim JK; Rodriguez J; Fano D; Ichinose M
    J Appl Physiol (1985); 2007 Jul; 103(1):190-4. PubMed ID: 17478607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adrenergic and non-adrenergic control of active skeletal muscle blood flow: implications for blood pressure regulation during exercise.
    Holwerda SW; Restaino RM; Fadel PJ
    Auton Neurosci; 2015 Mar; 188():24-31. PubMed ID: 25467222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autonomic control of skeletal muscle blood flow at the onset of exercise.
    Buckwalter JB; Clifford PS
    Am J Physiol; 1999 Nov; 277(5):H1872-7. PubMed ID: 10564142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sympathetic restraint of muscle blood flow during hypoxic exercise.
    Stickland MK; Smith CA; Soriano BJ; Dempsey JA
    Am J Physiol Regul Integr Comp Physiol; 2009 May; 296(5):R1538-46. PubMed ID: 19297541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of nitric oxide in exercise sympatholysis.
    Buckwalter JB; Taylor JC; Hamann JJ; Clifford PS
    J Appl Physiol (1985); 2004 Jul; 97(1):417-23; discussion 416. PubMed ID: 15020577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noninvasive assessment of sympathetic vasoconstriction in human and rodent skeletal muscle using near-infrared spectroscopy and Doppler ultrasound.
    Fadel PJ; Keller DM; Watanabe H; Raven PB; Thomas GD
    J Appl Physiol (1985); 2004 Apr; 96(4):1323-30. PubMed ID: 14657045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of sympathetic restraint in human skeletal muscle during exercise: role of α-adrenergic and nonadrenergic mechanisms.
    Hansen AB; Moralez G; Romero SA; Gasho C; Tymko MM; Ainslie PN; Hofstätter F; Rainer SL; Lawley JS; Hearon CM
    Am J Physiol Heart Circ Physiol; 2020 Jul; 319(1):H192-H202. PubMed ID: 32502375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuropeptide Y1 receptor vasoconstriction in exercising canine skeletal muscles.
    Buckwalter JB; Hamann JJ; Clifford PS
    J Appl Physiol (1985); 2005 Dec; 99(6):2115-20. PubMed ID: 16099895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle metaboreflex activation during dynamic exercise vasoconstricts ischemic active skeletal muscle.
    Kaur J; Machado TM; Alvarez A; Krishnan AC; Hanna HW; Altamimi YH; Senador D; Spranger MD; O'Leary DS
    Am J Physiol Heart Circ Physiol; 2015 Dec; 309(12):H2145-51. PubMed ID: 26475591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hindlimb unweighting does not alter vasoconstrictor responsiveness and nitric oxide-mediated inhibition of sympathetic vasoconstriction.
    Just TP; Jendzjowsky NG; DeLorey DS
    J Physiol; 2015 May; 593(9):2213-24. PubMed ID: 25752721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural control of muscle blood flow during exercise.
    Thomas GD; Segal SS
    J Appl Physiol (1985); 2004 Aug; 97(2):731-8. PubMed ID: 15247201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exercise attenuates alpha-adrenergic-receptor responsiveness in skeletal muscle vasculature.
    Buckwalter JB; Naik JS; Valic Z; Clifford PS
    J Appl Physiol (1985); 2001 Jan; 90(1):172-8. PubMed ID: 11133908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. alpha-adrenergic vasoconstriction in active skeletal muscles during dynamic exercise.
    Buckwalter JB; Clifford PS
    Am J Physiol; 1999 Jul; 277(1):H33-9. PubMed ID: 10409179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vasodilatation is obligatory for contraction-induced hyperaemia in canine skeletal muscle.
    Hamann JJ; Buckwalter JB; Clifford PS
    J Physiol; 2004 Jun; 557(Pt 3):1013-20. PubMed ID: 15073277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.