These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 12015600)

  • 21. Aspects of fish conservation in the upper Patos Lagoon basin.
    Fontoura NF; Vieira JP; Becker FG; Rodrigues LR; Malabarba LR; Schulz UH; Möller OO; Garcia AM; Vilella FS
    J Fish Biol; 2016 Jul; 89(1):315-36. PubMed ID: 27278087
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional reorganization of marine fish nurseries under climate warming.
    McLean MJ; Mouillot D; Goascoz N; Schlaich I; Auber A
    Glob Chang Biol; 2019 Feb; 25(2):660-674. PubMed ID: 30367735
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Warm, dry winters truncate timing and size distribution of seaward-migrating salmon across a large, regulated watershed.
    Munsch SH; Greene CM; Johnson RC; Satterthwaite WH; Imaki H; Brandes PL
    Ecol Appl; 2019 Jun; 29(4):e01880. PubMed ID: 30838703
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Climate mediates hypoxic stress on fish diversity and nursery function at the land-sea interface.
    Hughes BB; Levey MD; Fountain MC; Carlisle AB; Chavez FP; Gleason MG
    Proc Natl Acad Sci U S A; 2015 Jun; 112(26):8025-30. PubMed ID: 26056293
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Climate change and distribution shifts in marine fishes.
    Perry AL; Low PJ; Ellis JR; Reynolds JD
    Science; 2005 Jun; 308(5730):1912-5. PubMed ID: 15890845
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Global patterns and predictors of fish species richness in estuaries.
    Vasconcelos RP; Henriques S; França S; Pasquaud S; Cardoso I; Laborde M; Cabral HN
    J Anim Ecol; 2015 Sep; 84(5):1331-41. PubMed ID: 25788236
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Climate oscillations effects on market prices of commercially important fish in the northern Alboran Sea.
    Fernández IL; Báez JC; Rubio CJ; Muñoz P; Camiñas JA; Macías D
    Int J Biometeorol; 2020 Apr; 64(4):689-699. PubMed ID: 32006116
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Warming temperatures and smaller body sizes: synchronous changes in growth of North Sea fishes.
    Baudron AR; Needle CL; Rijnsdorp AD; Marshall CT
    Glob Chang Biol; 2014 Apr; 20(4):1023-31. PubMed ID: 24375891
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Warming shelf seas drive the subtropicalization of European pelagic fish communities.
    Montero-Serra I; Edwards M; Genner MJ
    Glob Chang Biol; 2015 Jan; 21(1):144-53. PubMed ID: 25230844
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reassessing regime shifts in the North Pacific: incremental climate change and commercial fishing are necessary for explaining decadal-scale biological variability.
    Litzow MA; Mueter FJ; Hobday AJ
    Glob Chang Biol; 2014 Jan; 20(1):38-50. PubMed ID: 23996901
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Climate change effects on fishes and fisheries: towards a cause-and-effect understanding.
    Pörtner HO; Peck MA
    J Fish Biol; 2010 Nov; 77(8):1745-79. PubMed ID: 21078088
    [TBL] [Abstract][Full Text] [Related]  

  • 32. It is the economy, stupid! Projecting the fate of fish populations using ecological-economic modeling.
    Quaas MF; Reusch TB; Schmidt JO; Tahvonen O; Voss R
    Glob Chang Biol; 2016 Jan; 22(1):264-70. PubMed ID: 26348787
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synergistic effects of harvest and climate drive synchronous somatic growth within key New Zealand fisheries.
    Morrongiello JR; Horn PL; Ó Maolagáin C; Sutton PJH
    Glob Chang Biol; 2021 Apr; 27(7):1470-1484. PubMed ID: 33502819
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatial and temporal variability in the otolith chemistry of the Brazilian snapper Lutjanus alexandrei from estuarine and coastal environments.
    Aschenbrenner A; Ferreira BP; Rooker JR
    J Fish Biol; 2016 Jul; 89(1):753-69. PubMed ID: 27255666
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metapopulation Tracking Juvenile Penguins Reveals an Ecosystem-wide Ecological Trap.
    Sherley RB; Ludynia K; Dyer BM; Lamont T; Makhado AB; Roux JP; Scales KL; Underhill LG; Votier SC
    Curr Biol; 2017 Feb; 27(4):563-568. PubMed ID: 28190725
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using new electrofishing technology to amp-up fish sampling in estuarine habitats.
    Warry FY; Reich P; Hindell JS; McKenzie J; Pickworth A
    J Fish Biol; 2013 Apr; 82(4):1119-37. PubMed ID: 23557295
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of fish movement assumptions on the design of a marine protected area to protect an overfished stock.
    Cornejo-Donoso J; Einarsson B; Birnir B; Gaines SD
    PLoS One; 2017; 12(10):e0186309. PubMed ID: 29023580
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regime Shift in an Exploited Fish Community Related to Natural Climate Oscillations.
    Auber A; Travers-Trolet M; Villanueva MC; Ernande B
    PLoS One; 2015; 10(7):e0129883. PubMed ID: 26132268
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fishing elevates variability in the abundance of exploited species.
    Hsieh CH; Reiss CS; Hunter JR; Beddington JR; May RM; Sugihara G
    Nature; 2006 Oct; 443(7113):859-62. PubMed ID: 17051218
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of marine protected areas on overfished fishing stocks with multiple stable states.
    Takashina N; Mougi A
    J Theor Biol; 2014 Jan; 341():64-70. PubMed ID: 24083999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.