These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 12015600)

  • 41. Spatial variability in long-term changes of climate and oceanographic conditions in Korea.
    Jung S
    J Environ Biol; 2008 Jul; 29(4):519-29. PubMed ID: 19195391
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ecological effects of climate fluctuations.
    Stenseth NC; Mysterud A; Ottersen G; Hurrell JW; Chan KS; Lima M
    Science; 2002 Aug; 297(5585):1292-6. PubMed ID: 12193777
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Seasonal composition, abundance and biomass of the subestuarine fish assemblage in Solís Chico (Río de la Plata estuary, Uruguay).
    Plavan AA; Gurdek R; Muñoz N; Gutierrez JM; Spósito M; Correa P; Caride A
    Braz J Biol; 2017; 77(3):622-631. PubMed ID: 27783761
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fisheries: deep-sea fishes qualify as endangered.
    Devine JA; Baker KD; Haedrich RL
    Nature; 2006 Jan; 439(7072):29. PubMed ID: 16397489
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Long-term functional changes in an estuarine fish assemblage.
    Baptista J; Martinho F; Nyitrai D; Pardal MA; Dolbeth M
    Mar Pollut Bull; 2015 Aug; 97(1-2):125-134. PubMed ID: 26093816
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Eight decades of sampling reveal a contemporary novel fish assemblage in coastal nursery habitats.
    Barceló C; Ciannelli L; Olsen EM; Johannessen T; Knutsen H
    Glob Chang Biol; 2016 Mar; 22(3):1155-67. PubMed ID: 26238690
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Short and long-term temperature variations drive recruitment variability in marine and estuarine juvenile fishes.
    Lourenço S; Bueno-Pardo J; Vaz A; Primo AL; Costa F; Pardal MA; Martinho F
    Mar Pollut Bull; 2023 Jul; 192():115093. PubMed ID: 37271077
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Why are there so few freshwater fish species in most estuaries?
    Whitfield AK
    J Fish Biol; 2015 Apr; 86(4):1227-50. PubMed ID: 25739335
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Local reflects global: Life stage-dependent changes in the phenology of coastal habitat use by North Sea herring.
    Rademaker M; Peck MA; van Leeuwen A
    Glob Chang Biol; 2024 Apr; 30(4):e17285. PubMed ID: 38660809
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluation of marine subareas of Europe using life history parameters and trophic levels of selected fish populations.
    Jayasinghe RP; Amarasinghe US; Newton A
    Mar Environ Res; 2015 Dec; 112(Pt B):81-90. PubMed ID: 26297042
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Relative impacts of multiple human stressors in estuaries and coastal waters in the North Sea-Baltic Sea transition zone.
    Andersen JH; Al-Hamdani Z; Harvey ET; Kallenbach E; Murray C; Stock A
    Sci Total Environ; 2020 Feb; 704():135316. PubMed ID: 31896214
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Water temperature and fish growth: otoliths predict growth patterns of a marine fish in a changing climate.
    Rountrey AN; Coulson PG; Meeuwig JJ; Meekan M
    Glob Chang Biol; 2014 Aug; 20(8):2450-8. PubMed ID: 24862838
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Slowing down of North Pacific climate variability and its implications for abrupt ecosystem change.
    Boulton CA; Lenton TM
    Proc Natl Acad Sci U S A; 2015 Sep; 112(37):11496-501. PubMed ID: 26324900
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Habitat continuity effects on gradients of fish biomass across marine protected area boundaries.
    Forcada A; Bayle-Sempere JT; Valle C; Sánchez-Jerez P
    Mar Environ Res; 2008 Dec; 66(5):536-47. PubMed ID: 18829099
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Protecting the hand that feeds us: seagrass (Zostera marina) serves as commercial juvenile fish habitat.
    Bertelli CM; Unsworth RK
    Mar Pollut Bull; 2014 Jun; 83(2):425-9. PubMed ID: 23998854
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phenological changes in the Northwestern Mediterranean copepods Centropages typicus and Temora stylifera linked to climate forcing.
    Molinero JC; Ibanez F; Souissi S; Chifflet M; Nival P
    Oecologia; 2005 Oct; 145(4):640-9. PubMed ID: 15965753
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Diets and trophic guilds of small fishes from coastal marine habitats in western Taiwan.
    Egan JP; Chew US; Kuo CH; Villarroel-Diaz V; Hundt PJ; Iwinski NG; Hammer MP; Simons AM
    J Fish Biol; 2017 Jul; 91(1):331-345. PubMed ID: 28593647
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Long-Term Changes in the Distributions of Larval and Adult Fish in the Northeast U.S. Shelf Ecosystem.
    Walsh HJ; Richardson DE; Marancik KE; Hare JA
    PLoS One; 2015; 10(9):e0137382. PubMed ID: 26398900
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Climate change affects marine fishes through the oxygen limitation of thermal tolerance.
    Pörtner HO; Knust R
    Science; 2007 Jan; 315(5808):95-7. PubMed ID: 17204649
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Complex interplays among population dynamics, environmental forcing, and exploitation in fisheries.
    Rouyer T; Fromentin JM; Ménard F; Cazelles B; Briand K; Pianet R; Planque B; Stenseth NC
    Proc Natl Acad Sci U S A; 2008 Apr; 105(14):5420-5. PubMed ID: 18391220
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.