These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 12015807)

  • 1. Skeletal adaptations to alterations in weight-bearing activity: a comparison of models of disuse osteoporosis.
    Giangregorio L; Blimkie CJ
    Sports Med; 2002; 32(7):459-76. PubMed ID: 12015807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Space flight: a challenge for normal bone homeostasis.
    Carmeliet G; Vico L; Bouillon R
    Crit Rev Eukaryot Gene Expr; 2001; 11(1-3):131-44. PubMed ID: 11693958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical activity in the prevention and amelioration of osteoporosis in women : interaction of mechanical, hormonal and dietary factors.
    Borer KT
    Sports Med; 2005; 35(9):779-830. PubMed ID: 16138787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disuse osteoporosis.
    Takata S; Yasui N
    J Med Invest; 2001 Aug; 48(3-4):147-56. PubMed ID: 11694954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discordant recovery of bone mass and mechanical properties during prolonged recovery from disuse.
    Shirazi-Fard Y; Kupke JS; Bloomfield SA; Hogan HA
    Bone; 2013 Jan; 52(1):433-43. PubMed ID: 23017660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting skeletal adaptation in altered gravity environments.
    Keller TS; Strauss AM
    J Br Interplanet Soc; 1993 Mar; 46(3):87-96. PubMed ID: 11539499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anti-Disuse Osteoporosis Activity of a Complex of Calcium-Binding Peptide from Auricularia auricula Protein Hydrolysates.
    Qu H; Yi J; Gao X; Zhao H; Wang Z
    J Food Sci; 2019 Jul; 84(7):1909-1919. PubMed ID: 31237973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The osteogenic effects of swimming on bone mass, strength, and microarchitecture in rats with unloading-induced bone loss.
    Volpon JB; Silva AV; Falcai MJ; Louzada MJ; Zamarioli A; Kotake BG; Issa JP
    Microsc Res Tech; 2015 Sep; 78(9):784-91. PubMed ID: 26179081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skeletal calcium homeostasis and countermeasures to prevent disuse osteoporosis.
    Schneider VS; McDonald J
    Calcif Tissue Int; 1984; 36 Suppl 1():S151-44. PubMed ID: 6430516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural adaptation to changing skeletal load in the progression toward hip fragility: the study of osteoporotic fractures.
    Beck TJ; Oreskovic TL; Stone KL; Ruff CB; Ensrud K; Nevitt MC; Genant HK; Cummings SR
    J Bone Miner Res; 2001 Jun; 16(6):1108-19. PubMed ID: 11393788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Skeletal responses to space flight and the bed rest analog: a review.
    LeBlanc AD; Spector ER; Evans HJ; Sibonga JD
    J Musculoskelet Neuronal Interact; 2007; 7(1):33-47. PubMed ID: 17396004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Previous exposure to simulated microgravity does not exacerbate bone loss during subsequent exposure in the proximal tibia of adult rats.
    Shirazi-Fard Y; Anthony RA; Kwaczala AT; Judex S; Bloomfield SA; Hogan HA
    Bone; 2013 Oct; 56(2):461-73. PubMed ID: 23871849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Secondary osteoporosis UPDATE. Bone loss due to bed rest and human space flight study].
    Ohshima H
    Clin Calcium; 2010 May; 20(5):709-16. PubMed ID: 20445282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prevention of space flight induced soft tissue calcification and disuse osteoporosis.
    Schneider VS; LeBlanc A; Huntoon CL
    Acta Astronaut; 1993; 29(2):139-40. PubMed ID: 11543594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insulin-like growth factor I stimulates recovery of bone lost after a period of skeletal unloading.
    Boudignon BM; Bikle DD; Kurimoto P; Elalieh H; Nishida S; Wang Y; Burghardt A; Majumdar S; Orwoll BE; Rosen C; Halloran BP
    J Appl Physiol (1985); 2007 Jul; 103(1):125-31. PubMed ID: 17412794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The response of bone to mechanical loading and disuse: fundamental principles and influences on osteoblast/osteocyte homeostasis.
    Skerry TM
    Arch Biochem Biophys; 2008 May; 473(2):117-23. PubMed ID: 18334226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of anti-osteoporotic agents on the prevention of bone loss in unloaded bone.
    Siu WS; Ko CH; Hung LK; Lau CP; Lau CB; Fung KP; Leung PC
    Mol Med Rep; 2013 Oct; 8(4):1188-94. PubMed ID: 23970373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mouse model of disuse osteoporosis based on a movable noninvasive 3D-printed unloading device.
    Li J; Geng J; Lin T; Cai M; Sun Y
    J Orthop Translat; 2022 Mar; 33():1-12. PubMed ID: 35070713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The osteogenic effects of swimming, jumping, and vibration on the protection of bone quality from disuse bone loss.
    Falcai MJ; Zamarioli A; Okubo R; de Paula FJ; Volpon JB
    Scand J Med Sci Sports; 2015 Jun; 25(3):390-7. PubMed ID: 24779886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spaceflight and the skeleton: lessons for the earthbound.
    Bikle DD; Halloran BP; Morey-Holton E
    Gravit Space Biol Bull; 1997 Jun; 10(2):119-35. PubMed ID: 11540113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.