These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 12016049)
1. Distribution patterns of over-represented k-mers in non-coding yeast DNA. Hampson S; Kibler D; Baldi P Bioinformatics; 2002 Apr; 18(4):513-28. PubMed ID: 12016049 [TBL] [Abstract][Full Text] [Related]
2. Identification of regulatory elements using a feature selection method. Keleş S; van der Laan M; Eisen MB Bioinformatics; 2002 Sep; 18(9):1167-75. PubMed ID: 12217908 [TBL] [Abstract][Full Text] [Related]
3. Enrichment of transcriptional regulatory sites in non-coding genomic region. Xue W; Wang J; Shen Z; Zhu H Bioinformatics; 2004 Mar; 20(4):569-75. PubMed ID: 14990453 [TBL] [Abstract][Full Text] [Related]
4. Efficiently finding regulatory elements using correlation with gene expression. Bannai H; Inenaga S; Shinohara A; Takeda M; Miyano S J Bioinform Comput Biol; 2004 Jun; 2(2):273-88. PubMed ID: 15297982 [TBL] [Abstract][Full Text] [Related]
5. Distribution of words with a predefined range of mismatches to a DNA probe in bacterial genomes. Melko OM; Mushegian AR Bioinformatics; 2004 Jan; 20(1):67-74. PubMed ID: 14693810 [TBL] [Abstract][Full Text] [Related]
6. Comparative analysis of DNA word abundances in four yeast genomes using a novel statistical background model. Hariharan R; Simon R; Pillai MR; Taylor TD PLoS One; 2013; 8(3):e58038. PubMed ID: 23472131 [TBL] [Abstract][Full Text] [Related]
7. Comparisons and validation of statistical clustering techniques for microarray gene expression data. Datta S; Datta S Bioinformatics; 2003 Mar; 19(4):459-66. PubMed ID: 12611800 [TBL] [Abstract][Full Text] [Related]
8. Prediction of cis-regulatory elements: from high-information content analysis to motif identification. Li G; Lu J; Olman V; Xu Y J Bioinform Comput Biol; 2007 Aug; 5(4):817-38. PubMed ID: 17787058 [TBL] [Abstract][Full Text] [Related]
9. A duplication growth model of gene expression networks. Bhan A; Galas DJ; Dewey TG Bioinformatics; 2002 Nov; 18(11):1486-93. PubMed ID: 12424120 [TBL] [Abstract][Full Text] [Related]
10. Learning probabilistic models of cis-regulatory modules that represent logical and spatial aspects. Noto K; Craven M Bioinformatics; 2007 Jan; 23(2):e156-62. PubMed ID: 17237085 [TBL] [Abstract][Full Text] [Related]
11. Subtle motifs: defining the limits of motif finding algorithms. Keich U; Pevzner PA Bioinformatics; 2002 Oct; 18(10):1382-90. PubMed ID: 12376383 [TBL] [Abstract][Full Text] [Related]
12. CLICK and EXPANDER: a system for clustering and visualizing gene expression data. Sharan R; Maron-Katz A; Shamir R Bioinformatics; 2003 Sep; 19(14):1787-99. PubMed ID: 14512350 [TBL] [Abstract][Full Text] [Related]
13. An information theoretic approach for analyzing temporal patterns of gene expression. Kasturi J; Acharya R; Ramanathan M Bioinformatics; 2003 Mar; 19(4):449-58. PubMed ID: 12611799 [TBL] [Abstract][Full Text] [Related]
18. Determining a unique defining DNA sequence for yeast species using hashing techniques. Wesselink JJ; De La Iglesia B; James SA; Dicks JL; Roberts IN; Rayward-Smith VJ Bioinformatics; 2002 Jul; 18(7):1004-10. PubMed ID: 12117799 [TBL] [Abstract][Full Text] [Related]
19. Gene interaction in DNA microarray data is decomposed by information geometric measure. Nakahara H; Nishimura S; Inoue M; Hori G; Amari S Bioinformatics; 2003 Jun; 19(9):1124-31. PubMed ID: 12801873 [TBL] [Abstract][Full Text] [Related]
20. A universal framework for regulatory element discovery across all genomes and data types. Elemento O; Slonim N; Tavazoie S Mol Cell; 2007 Oct; 28(2):337-50. PubMed ID: 17964271 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]