These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 12016830)

  • 61. Dynamic influence of wrist flexion and extension on the intracortical inhibition of the first dorsal interosseus muscle during precision grip.
    Gagné M; Schneider C
    Brain Res; 2008 Feb; 1195():77-88. PubMed ID: 18206858
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Imaging the human motor system's beta-band synchronization during isometric contraction.
    Schoffelen JM; Oostenveld R; Fries P
    Neuroimage; 2008 Jun; 41(2):437-47. PubMed ID: 18396062
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Restored flexor carpi ulnaris function after mere tenotomy explains the recurrence of spastic wrist deformity.
    Kreulen M; Smeulders MJ; Hage JJ
    Clin Biomech (Bristol, Avon); 2004 May; 19(4):429-32. PubMed ID: 15109764
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Classification of finger activation for use in a robotic prosthesis arm.
    Peleg D; Braiman E; Yom-Tov E; Inbar GF
    IEEE Trans Neural Syst Rehabil Eng; 2002 Dec; 10(4):290-3. PubMed ID: 12611366
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Excitability changes in resting forearm muscles during voluntary foot movements depend on hand position: a neural substrate for hand-foot isodirectional coupling.
    Borroni P; Cerri G; Baldissera F
    Brain Res; 2004 Oct; 1022(1-2):117-25. PubMed ID: 15353221
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Smaller external notebook mice have different effects on posture and muscle activity.
    Oude Hengel KM; Houwink A; Odell D; van Dieën JH; Dennerlein JT
    Clin Biomech (Bristol, Avon); 2008 Jul; 23(6):727-34. PubMed ID: 18348899
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Physical workload during use of speech recognition and traditional computer input devices.
    Juul-Kristensen B; Laursen B; Pilegaard M; Jensen BR
    Ergonomics; 2004 Feb; 47(2):119-33. PubMed ID: 14660208
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Blind separation of linear instantaneous mixtures of nonstationary surface myoelectric signals.
    Farina D; Févotte C; Doncarli C; Merletti R
    IEEE Trans Biomed Eng; 2004 Sep; 51(9):1555-67. PubMed ID: 15376504
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Feasibility of using EMG driven neuromusculoskeletal model for prediction of dynamic movement of the elbow.
    Koo TK; Mak AF
    J Electromyogr Kinesiol; 2005 Feb; 15(1):12-26. PubMed ID: 15642650
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Recurrent Convolutional Neural Networks as an Approach to Position-Aware Myoelectric Prosthesis Control.
    Williams H; Shehata AW; Dawson M; Scheme E; Hebert J; Pilarski P
    IEEE Trans Biomed Eng; 2022 Jul; 69(7):2243-2255. PubMed ID: 34986093
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Comparison of surface and intramuscular EMG pattern recognition for simultaneous wrist/hand motion classification.
    Smith LH; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4223-6. PubMed ID: 24110664
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Estimation of wrist angle from sonomyography using support vector machine and artificial neural network models.
    Xie HB; Zheng YP; Guo JY; Chen X; Shi J
    Med Eng Phys; 2009 Apr; 31(3):384-91. PubMed ID: 18586548
    [TBL] [Abstract][Full Text] [Related]  

  • 73. [Complexity analysis of surface EMG signals].
    Cai LY; Wang ZZ; Zhang HH
    Space Med Med Eng (Beijing); 2000 Apr; 13(2):124-7. PubMed ID: 11543051
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Identification of motion from multi-channel EMG signals for control of prosthetic hand.
    Geethanjali P; Ray KK
    Australas Phys Eng Sci Med; 2011 Sep; 34(3):419-27. PubMed ID: 21667211
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Arm Orthosis/Prosthesis Movement Control Based on Surface EMG Signal Extraction.
    Suberbiola A; Zulueta E; Lopez-Guede JM; Etxeberria-Agiriano I; Graña M
    Int J Neural Syst; 2015 May; 25(3):1550009. PubMed ID: 25851029
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Hand movements classification for myoelectric control system using adaptive resonance theory.
    Jahani Fariman H; Ahmad SA; Hamiruce Marhaban M; Alijan Ghasab M; Chappell PH
    Australas Phys Eng Sci Med; 2016 Mar; 39(1):85-102. PubMed ID: 26581764
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Simultaneous and proportional force estimation for multifunction myoelectric prostheses using mirrored bilateral training.
    Nielsen JL; Holmgaard S; Jiang N; Englehart KB; Farina D; Parker PA
    IEEE Trans Biomed Eng; 2011 Mar; 58(3):681-8. PubMed ID: 20729161
    [TBL] [Abstract][Full Text] [Related]  

  • 78. An intelligent system with EMG-based joint angle estimation for telemanipulation.
    Suryanarayanan S; Reddy NP; Gupta V
    Stud Health Technol Inform; 1996; 29():546-52. PubMed ID: 10163782
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Performances of one-dimensional sonomyography and surface electromyography in tracking guided patterns of wrist extension.
    Guo JY; Zheng YP; Huang QH; Chen X; He JF; Chan HL
    Ultrasound Med Biol; 2009 Jun; 35(6):894-902. PubMed ID: 19329244
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Adaptive myoelectric pattern recognition toward improved multifunctional prosthesis control.
    Liu J
    Med Eng Phys; 2015 Apr; 37(4):424-30. PubMed ID: 25749182
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.