These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 12016830)

  • 81. Decoding Attempted Hand Movements in Stroke Patients Using Surface Electromyography.
    Jochumsen M; Niazi IK; Zia Ur Rehman M; Amjad I; Shafique M; Gilani SO; Waris A
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33256073
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Effect of Subcutaneous Muscle Displacement of Flexor Carpi Radialis on Surface Electromyography.
    Pan L; Liu K; Li J
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1244-1251. PubMed ID: 35533166
    [TBL] [Abstract][Full Text] [Related]  

  • 83. MoBio: A 5 DOF trans-humeral robotic prosthesis.
    Abayasiri RAM; Madusanka DGK; Arachchige NMP; Silva ATS; Gopura RARC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1627-1632. PubMed ID: 28814053
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Resolving the limb position effect in myoelectric pattern recognition.
    Fougner A; Scheme E; Chan AD; Englehart K; Stavdahl O
    IEEE Trans Neural Syst Rehabil Eng; 2011 Dec; 19(6):644-51. PubMed ID: 21846608
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Characterization of surface electromyography using time domain features for determining hand motion and stages of contraction.
    Bin Ahmad Nadzri AA; Ahmad SA; Marhaban MH; Jaafar H
    Australas Phys Eng Sci Med; 2014 Mar; 37(1):133-7. PubMed ID: 24443218
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Artificial neural network EMG classifier for functional hand grasp movements prediction.
    Gandolla M; Ferrante S; Ferrigno G; Baldassini D; Molteni F; Guanziroli E; Cotti Cottini M; Seneci C; Pedrocchi A
    J Int Med Res; 2017 Dec; 45(6):1831-1847. PubMed ID: 27677300
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Comparative study of PCA in classification of multichannel EMG signals.
    Geethanjali P
    Australas Phys Eng Sci Med; 2015 Jun; 38(2):331-43. PubMed ID: 25860845
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Real-time, simultaneous myoelectric control using force and position-based training paradigms.
    Ameri A; Scheme EJ; Kamavuako EN; Englehart KB; Parker PA
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):279-87. PubMed ID: 24058007
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Employing 3D virtual reality games to develop ANN for device control: a pilot study.
    Patterson PE
    Biomed Sci Instrum; 2001; 37():475-8. PubMed ID: 11347437
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Optimizing pattern recognition-based control for partial-hand prosthesis application.
    Earley EJ; Adewuyi AA; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3574-7. PubMed ID: 25570763
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Inter-classifier comparison for upper extremity EMG signal at different hand postures and arm positions using pattern recognition.
    Asghar A; Khan SJ; Azim F; Shakeel CS; Hussain A; Niazi IK
    Proc Inst Mech Eng H; 2022 Feb; 236(2):228-238. PubMed ID: 34686067
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Prediction of wrist angle from sonomyography signals with artificial neural networks technique.
    Shi J; Zheng Y; Yan Z
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3549-52. PubMed ID: 17946186
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Basic Hand Gestures Classification Based on Surface Electromyography.
    Palkowski A; Redlarski G
    Comput Math Methods Med; 2016; 2016():6481282. PubMed ID: 27298630
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Dataset for multi-channel surface electromyography (sEMG) signals of hand gestures.
    Ozdemir MA; Kisa DH; Guren O; Akan A
    Data Brief; 2022 Apr; 41():107921. PubMed ID: 35198693
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Towards the application of one-dimensional sonomyography for powered upper-limb prosthetic control using machine learning models.
    Guo JY; Zheng YP; Xie HB; Koo TK
    Prosthet Orthot Int; 2013 Feb; 37(1):43-9. PubMed ID: 22683737
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Quantification of gaps in the EMG interference pattern in chronic hemiparesis.
    Fitts SS; Hammond MC; Kraft GH; Nutter PB
    Electroencephalogr Clin Neurophysiol; 1989 Sep; 73(3):225-32. PubMed ID: 2475327
    [TBL] [Abstract][Full Text] [Related]  

  • 97. [BEHAVIOR OF THE BICEPS BRACHII, BRACHIORADIALIS AND FLEXOR CARPI RADIALIS IN THE PROSUPINATION AND FLEXION OF THE FOREARM. ELECTROMYOGRAPHIC STUDY].
    GENISGALVEZ JM; SANTOSGUTIERREZ L
    Arch Esp Morfol; 1963; 18():93-100. PubMed ID: 14128733
    [No Abstract]   [Full Text] [Related]  

  • 98. Exploiting accelerometers to improve movement classification for prosthetics.
    Gijsberts A; Caputo B
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650476. PubMed ID: 24187293
    [TBL] [Abstract][Full Text] [Related]  

  • 99. EMG pattern recognition based on artificial intelligence techniques.
    Park SH; Lee SP
    IEEE Trans Rehabil Eng; 1998 Dec; 6(4):400-5. PubMed ID: 9865887
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Comparing functional EMG characteristics between zero-order and first-order interface dynamics.
    Johnson RE; Sensinger JW
    IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):965-70. PubMed ID: 24760925
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.