BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 12017384)

  • 1. High risk of intraoperative awareness during cardiopulmonary bypass with isoflurane administration via diffusion membrane oxygenators.
    Philipp A; Wiesenack C; Behr R; Schmid FX; Birnbaum DE
    Perfusion; 2002 May; 17(3):175-8. PubMed ID: 12017384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo uptake and elimination of isoflurane by different membrane oxygenators during cardiopulmonary bypass.
    Wiesenack C; Wiesner G; Keyl C; Gruber M; Philipp A; Ritzka M; Prasser C; Taeger K
    Anesthesiology; 2002 Jul; 97(1):133-8. PubMed ID: 12131114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Occupational exposure to desflurane and isoflurane during cardiopulmonary bypass: is the gas outlet of the membrane oxygenator an operating theatre pollution hazard?
    Hoerauf K; Harth M; Wild K; Hobbhahn J
    Br J Anaesth; 1997 Apr; 78(4):378-80. PubMed ID: 9135356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elimination of sevoflurane is reduced in plasma-tight compared to conventional membrane oxygenators.
    Prasser C; Zelenka M; Gruber M; Philipp A; Keyser A; Wiesenack C
    Eur J Anaesthesiol; 2008 Feb; 25(2):152-7. PubMed ID: 17655810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring oxygenator expiratory isoflurane concentrations and the bispectral index to guide isoflurane requirements during cardiopulmonary bypass.
    Liu EH; Dhara SS
    J Cardiothorac Vasc Anesth; 2005 Aug; 19(4):485-7. PubMed ID: 16085254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of the oxygenator: past, present, and future.
    Iwahashi H; Yuri K; Nosé Y
    J Artif Organs; 2004; 7(3):111-20. PubMed ID: 15558331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro uptake and elimination of isoflurane by different membrane oxygenators.
    Hickey S; Gaylor JD; Kenny GN
    J Cardiothorac Vasc Anesth; 1996 Apr; 10(3):352-5. PubMed ID: 8725416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential problem when using the new lower-prime hollow-fibre membrane oxygenators with uncoated stainless steel heat exchangers.
    Palanzo DA; Manley NJ; Montesano RM; Quinn M; Elmore BA; Gustafson PA; Zarro DL; Meloy PC
    Perfusion; 1996 Nov; 11(6):481-5. PubMed ID: 8971950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Normobaric versus Hypobaric Oxygenation on Gaseous Microemboli Removal in a Diffusion Membrane Oxygenator: An In Vitro Comparison.
    Schuldes M; Riley JB; Francis SG; Clingan S
    J Extra Corpor Technol; 2016 Sep; 48(3):129-136. PubMed ID: 27729706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the depth of isoflurane anaesthesia during cardiopulmonary bypass.
    Ng KT; Alston RP; Just G; McKenzie C
    Perfusion; 2018 Mar; 33(2):148-155. PubMed ID: 28985693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of hemodynamic features and thrombosis risk of membrane oxygenators with different structures: A numerical study.
    Fu X; Su Z; Wang Y; Sun A; Wang L; Deng X; Chen Z; Fan Y
    Comput Biol Med; 2023 Jun; 159():106907. PubMed ID: 37075599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of surface coating on platelet count drop during cardiopulmonary bypass.
    Palanzo DA; Zarro DL; Manley NJ; Montesano RM; Quinn M; Gustafson PA
    Perfusion; 1999 May; 14(3):195-200. PubMed ID: 10411249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gaseous microemboli and the influence of microporous membrane oxygenators.
    Weitkemper HH; Oppermann B; Spilker A; Knobl HJ; Körfer R
    J Extra Corpor Technol; 2005 Sep; 37(3):256-64. PubMed ID: 16350377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in sevoflurane plasma concentration with delivery through the oxygenator during on-pump cardiac surgery.
    Nitzschke R; Wilgusch J; Kersten JF; Trepte CJ; Haas SA; Reuter DA; Goetz AE; Goepfert MS
    Br J Anaesth; 2013 Jun; 110(6):957-65. PubMed ID: 23462192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of anaesthetic tensions in arterial blood and oxygenator exhaust gas during cardiopulmonary bypass.
    Lockwood GG; Sapsed-Byrne SM; Adams S
    Anaesthesia; 1999 May; 54(5):434-6. PubMed ID: 10995139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Washin and washout of isoflurane administered via bubble oxygenators during hypothermic cardiopulmonary bypass.
    Nussmeier NA; Lambert ML; Moskowitz GJ; Cohen NH; Weiskopf RB; Fisher DM; Eger EI
    Anesthesiology; 1989 Oct; 71(4):519-25. PubMed ID: 2802209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An in vitro study of the effects of isoflurane on oxygen transfer.
    Muhle ML; Stammers AH; Tremain KD; Niimi KS; Glogowski KR; Trowbridge CC; Yang T
    Perfusion; 2001 Jul; 16(4):293-9. PubMed ID: 11486848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen-transfer performance of a newly designed, very low-volume membrane oxygenator.
    Burn F; Ciocan S; Carmona NM; Berner M; Sourdon J; Carrel TP; Tevaearai Stahel HT; Longnus SL
    Interact Cardiovasc Thorac Surg; 2015 Sep; 21(3):352-8. PubMed ID: 26037378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water Condensation and Gas Exchange Correlation in Different Models and Fibers of Blood Oxygenators: "How Can We Improve Performance?".
    Condello I
    J Extra Corpor Technol; 2020 Mar; 52(1):43-51. PubMed ID: 32280143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of Volatile Anesthetic Agent in Extracorporeal Circuit as a Cause of Break in Polycarbonate Connector-Lessons Learnt.
    Gowda D; Rashmi K; Pandarinathan N; Desai N
    J Extra Corpor Technol; 2017 Sep; 49(3):198-200. PubMed ID: 28979044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.