These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 12018248)
1. Effect of kLa on the production of glucose 6-phosphate dehydrogenase from Saccharomyces cerevisiae grown by fermentation process. Silva DP; Pessoa A; Roberto IC; Vitolo M Appl Biochem Biotechnol; 2002; 98-100():205-13. PubMed ID: 12018248 [TBL] [Abstract][Full Text] [Related]
2. Production of glucose 6-phosphate dehydrogenase from genetically modified Saccharomyces cerevisiae grown by batch fermentation process. Martins das Neves LC; Pessoa A; Vitolo M Biotechnol Prog; 2005; 21(4):1136-9. PubMed ID: 16080693 [TBL] [Abstract][Full Text] [Related]
3. Effect of agitation and aeration on production of hexokinase by Saccharomyces cerevisiae. Silva DP; Pessoa A; Roberto IC; Vitolo M Appl Biochem Biotechnol; 2001; 91-93():605-13. PubMed ID: 11963889 [TBL] [Abstract][Full Text] [Related]
4. Effect of flow rate pattern on glucose-6-phosphate dehydrogenase synthesis in fed-batch culture of recombinant Saccharomyces cerevisiae. Miguel AS; Martins das Neves LC; Vitolo M; Pessoa A Biotechnol Prog; 2003; 19(2):320-4. PubMed ID: 12675566 [TBL] [Abstract][Full Text] [Related]
5. Enhancement of glucose oxidase production in batch cultivation of recombinant Saccharomyces cerevisiae: optimization of oxygen transfer condition. Kapat A; Jung JK; Park YH J Appl Microbiol; 2001 Feb; 90(2):216-22. PubMed ID: 11168724 [TBL] [Abstract][Full Text] [Related]
6. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains. Jeppsson M; Johansson B; Jensen PR; Hahn-Hägerdal B; Gorwa-Grauslund MF Yeast; 2003 Nov; 20(15):1263-72. PubMed ID: 14618564 [TBL] [Abstract][Full Text] [Related]
7. Kinetic modeling and sensitivity analysis for higher ethanol production in self-cloning xylose-using Saccharomyces cerevisiae. Fukuda A; Kuriya Y; Konishi J; Mutaguchi K; Uemura T; Miura D; Okamoto M J Biosci Bioeng; 2019 May; 127(5):563-569. PubMed ID: 30482500 [TBL] [Abstract][Full Text] [Related]
8. Effect of pH on the stability of hexokinase and glucose 6-phosphate dehydrogenase. Souza MA; Ribeiro MZ; Silva DP; Pessoa A; Vitolo M Appl Biochem Biotechnol; 2002; 98-100():265-72. PubMed ID: 12018254 [TBL] [Abstract][Full Text] [Related]
9. Importance of glucose-6-phosphate dehydrogenase (G6PDH) for vanillin tolerance in Saccharomyces cerevisiae. Nguyen TT; Kitajima S; Izawa S J Biosci Bioeng; 2014 Sep; 118(3):263-9. PubMed ID: 24725964 [TBL] [Abstract][Full Text] [Related]
10. Utilization of waste products of dehydrated onion industry for production of fodder yeast by Saccharomyces cerevisiae. Ghonaim SA; Abou-Zeid AA; Abd El-Fattah AF; Farid MA Zentralbl Bakteriol Naturwiss; 1980; 135(1):82-95. PubMed ID: 6990654 [TBL] [Abstract][Full Text] [Related]
11. Fed-batch production of glucose 6-phosphate dehydrogenase using recombinant Saccharomyces cerevisiae. das Neves LC; Pessoa A; Vitolo M Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):711-20. PubMed ID: 18478428 [TBL] [Abstract][Full Text] [Related]
12. Ergosterol production from molasses by genetically modified Saccharomyces cerevisiae. He X; Guo X; Liu N; Zhang B Appl Microbiol Biotechnol; 2007 May; 75(1):55-60. PubMed ID: 17225097 [TBL] [Abstract][Full Text] [Related]
13. Xylose fermentation efficiency and inhibitor tolerance of the recombinant industrial Saccharomyces cerevisiae strain NAPX37. Li YC; Mitsumasu K; Gou ZX; Gou M; Tang YQ; Li GY; Wu XL; Akamatsu T; Taguchi H; Kida K Appl Microbiol Biotechnol; 2016 Feb; 100(3):1531-1542. PubMed ID: 26603762 [TBL] [Abstract][Full Text] [Related]
14. [Improving ergosterol production from molasses by Saccharomyces cerevisiae]. Wang S; Guo X; He X; Zhang B Sheng Wu Gong Cheng Xue Bao; 2013 Nov; 29(11):1676-80. PubMed ID: 24701833 [TBL] [Abstract][Full Text] [Related]
15. High-cell-density fermentation for ergosterol production by Saccharomyces cerevisiae. Shang F; Wen S; Wang X; Tan T J Biosci Bioeng; 2006 Jan; 101(1):38-41. PubMed ID: 16503289 [TBL] [Abstract][Full Text] [Related]
16. Selection of thermotolerant Saccharomyces cerevisiae for high temperature ethanol production from molasses and increasing ethanol production by strain improvement. Pattanakittivorakul S; Lertwattanasakul N; Yamada M; Limtong S Antonie Van Leeuwenhoek; 2019 Jul; 112(7):975-990. PubMed ID: 30666530 [TBL] [Abstract][Full Text] [Related]
17. Effect of nutrients on fermentation of pretreated wheat straw at very high dry matter content by Saccharomyces cerevisiae. Jørgensen H Appl Biochem Biotechnol; 2009 May; 153(1-3):44-57. PubMed ID: 19093228 [TBL] [Abstract][Full Text] [Related]
18. Aeration strategy: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process. Alfenore S; Cameleyre X; Benbadis L; Bideaux C; Uribelarrea JL; Goma G; Molina-Jouve C; Guillouet SE Appl Microbiol Biotechnol; 2004 Feb; 63(5):537-42. PubMed ID: 12879304 [TBL] [Abstract][Full Text] [Related]
19. Application of oscillation for efficiency improvement of continuous ethanol fermentation with Saccharomyces cerevisiae under very-high-gravity conditions. Shen Y; Ge XM; Bai FW Appl Microbiol Biotechnol; 2010 Mar; 86(1):103-8. PubMed ID: 19898843 [TBL] [Abstract][Full Text] [Related]
20. The effect of aeration conditions, characterized by the volumetric mass transfer coefficient K(L)a, on the fermentation kinetics of Bacillus thuringiensis kurstaki. Mounsef JR; Salameh D; Louka N; Brandam C; Lteif R J Biotechnol; 2015 Sep; 210():100-6. PubMed ID: 26091772 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]