BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 12018263)

  • 1. Production of chelating agents through the enzymatic oxidation of acetosolv sugarcane bagasse lignin.
    Gonçalves AR; Soto-Oviedo MA
    Appl Biochem Biotechnol; 2002; 98-100():365-71. PubMed ID: 12018263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Obtainment of chelating agents through the enzymatic oxidation of lignins by phenol oxidase.
    Calabria GM; Gonçalves AR
    Appl Biochem Biotechnol; 2006; 129-132():320-5. PubMed ID: 16915650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroxymethylation and oxidation of Organosolv lignins and utilization of the products.
    Gonçalves AR; Benar P
    Bioresour Technol; 2001 Sep; 79(2):103-11. PubMed ID: 11480918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation in acidic medium of lignins from agricultural residues.
    Labat GA; Gonçalves AR
    Appl Biochem Biotechnol; 2008 Mar; 148(1-3):151-61. PubMed ID: 18418748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradation of sugarcane bagasse by Pleurotus citrinopileatus.
    Pandey VK; Singh MP; Srivastava AK; Vishwakarma SK; Takshak S
    Cell Mol Biol (Noisy-le-grand); 2012 Dec; 58(1):8-14. PubMed ID: 23273185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 24.7-kDa copper-containing oxidase, secreted by Thermobifida fusca, significantly increasing the xylanase/cellulase-catalyzed hydrolysis of sugarcane bagasse.
    Chen CY; Hsieh ZS; Cheepudom J; Yang CH; Meng M
    Appl Microbiol Biotechnol; 2013 Oct; 97(20):8977-86. PubMed ID: 23377789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mild acetosolv process to fractionate bamboo for the biorefinery: structural and antioxidant properties of the dissolved lignin.
    Li MF; Sun SN; Xu F; Sun RC
    J Agric Food Chem; 2012 Feb; 60(7):1703-12. PubMed ID: 22283627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monodisperse lignin fractions as standards in size-exclusion analysis: comparison with polystyrene standards.
    Botaro VR; Curvelo AA
    J Chromatogr A; 2009 May; 1216(18):3802-6. PubMed ID: 19269646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated processes for use of pulps and lignins obtained from sugarcane bagasse and straw: a review of recent efforts in Brazil.
    Gonçalves AR; Benar P; Costa SM; Ruzene DS; Moriya RY; Luz SM; Ferretti LP
    Appl Biochem Biotechnol; 2005; 121-124():821-6. PubMed ID: 15930561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhomogeneities in the chemical structure of sugarcane bagasse lignin.
    Sun JX; Sun XF; Sun RC; Fowler P; Baird MS
    J Agric Food Chem; 2003 Nov; 51(23):6719-25. PubMed ID: 14582966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sugarcane bagasse degradation and characterization of three white-rot fungi.
    Dong XQ; Yang JS; Zhu N; Wang ET; Yuan HL
    Bioresour Technol; 2013 Mar; 131():443-51. PubMed ID: 23376835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic hydrolysis of chemithermomechanically pretreated sugarcane bagasse and samples with reduced initial lignin content.
    Mendes FM; Siqueira G; Carvalho W; Ferraz A; Milagres AM
    Biotechnol Prog; 2011; 27(2):395-401. PubMed ID: 21344677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and structural characterization of sugarcane bagasse lignin after dilute phosphoric acid plus steam explosion pretreatment and its effect on cellulose hydrolysis.
    Zeng J; Tong Z; Wang L; Zhu JY; Ingram L
    Bioresour Technol; 2014 Feb; 154():274-81. PubMed ID: 24412855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of gaseous energy recovery from sugarcane bagasse by dark fermentation followed by biomethanation process.
    Kumari S; Das D
    Bioresour Technol; 2015 Oct; 194():354-63. PubMed ID: 26210150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Fractionating pretreatment of sugarcane bagasse for increasing the enzymatic digestibility of cellulose].
    Zhao X; Liu D
    Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):384-92. PubMed ID: 21650018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Panus tigrinus strains used in delignification of sugarcane bagasse prior to kraft pulping.
    Gonçalves AR; Costa SM; Esposito E
    Appl Biochem Biotechnol; 2002; 98-100():373-82. PubMed ID: 12018265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of Lignin in Agricultural Residues by locally Isolated Fungus Neurospora discreta.
    Pamidipati S; Ahmed A
    Appl Biochem Biotechnol; 2017 Apr; 181(4):1561-1572. PubMed ID: 27812897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antioxidant activities of lignin extracted from sugarcane bagasse via different chemical procedures.
    Li Z; Ge Y
    Int J Biol Macromol; 2012 Dec; 51(5):1116-20. PubMed ID: 22982809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lime pretreatment of sugarcane bagasse for bioethanol production.
    Rabelo SC; Maciel Filho R; Costa AC
    Appl Biochem Biotechnol; 2009 May; 153(1-3):139-50. PubMed ID: 19050835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lignin enrichment and enzyme deactivation as the root cause of enzymatic hydrolysis slowdown of steam pretreated sugarcane bagasse.
    Wallace J; Brienzo M; García-Aparicio MP; Görgens JF
    N Biotechnol; 2016 May; 33(3):361-71. PubMed ID: 26820122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.