BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

587 related articles for article (PubMed ID: 12018270)

  • 1. Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose, and arabinose.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 2002; 98-100():429-48. PubMed ID: 12018270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative ethanol productivities of different Zymomonas recombinants fermenting oat hull hydrolysate.
    Lawford HG; Rousseau JD; Tolan JS
    Appl Biochem Biotechnol; 2001; 91-93():133-46. PubMed ID: 11963842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulosic fuel ethanol: alternative fermentation process designs with wild-type and recombinant Zymomonas mobilis.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 2003; 105 -108():457-69. PubMed ID: 12721468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fermentation performance assessment of a genomically integrated xylose-utilizing recombinant of Zymomonas mobilis 39676.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 2001; 91-93():117-31. PubMed ID: 11963841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101.
    Mohagheghi A; Evans K; Chou YC; Zhang M
    Appl Biochem Biotechnol; 2002; 98-100():885-98. PubMed ID: 12018310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous fermentation studies with xylos-utilizing recombinant Zymomonas mobilis.
    Lawford HG; Rousseau JD; Mohagheghi A; McMillan JD
    Appl Biochem Biotechnol; 2000; 84-86():295-310. PubMed ID: 10849797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving fermentation performance of recombinant Zymomonas in acetic acid-containing media.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1998; 70-72():161-72. PubMed ID: 9627380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Brönsted acidic ionic liquid 1-(1-propylsulfonic)-3-methylimidazolium chloride on growth and co-fermentation of glucose, xylose and arabinose by Zymomonas mobilis AX101.
    Gyamerah M; Ampaw-Asiedu M; Mackey J; Menezes B; Woldesenbet S
    Lett Appl Microbiol; 2018 Jun; 66(6):549-557. PubMed ID: 29573262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of seed production for a simultaneous saccharification cofermentation biomass-to-ethanol process using recombinant Zymomonas.
    Lawford HG; Rousseau JD; McMillan JD
    Appl Biochem Biotechnol; 1997; 63-65():269-86. PubMed ID: 18576087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Evaluation on glucose-xylose co-fermentation by a recombinant Zymomonas mobilis strain].
    Feng Q; Li S; Wang L; Li T
    Sheng Wu Gong Cheng Xue Bao; 2012 Jan; 28(1):37-47. PubMed ID: 22667107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering.
    Deanda K; Zhang M; Eddy C; Picataggio S
    Appl Environ Microbiol; 1996 Dec; 62(12):4465-70. PubMed ID: 8953718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement and analysis of intracellular ATP levels in metabolically engineered Zymomonas mobilis fermenting glucose and xylose mixtures.
    Saez-Miranda JC; Saliceti-Piazza L; McMillan JD
    Biotechnol Prog; 2006; 22(2):359-68. PubMed ID: 16599547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ethanol production by recombinant Escherichia coli carrying genes from Zymomonas mobilis.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1991; 28-29():221-36. PubMed ID: 1929364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative energetics of glucose and xylose metabolism in recombinant Zymomonas mobilis.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 2000; 84-86():277-93. PubMed ID: 10849796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethanol production from wood hydrolysate using genetically engineered Zymomonas mobilis.
    Yanase H; Miyawaki H; Sakurai M; Kawakami A; Matsumoto M; Haga K; Kojima M; Okamoto K
    Appl Microbiol Biotechnol; 2012 Jun; 94(6):1667-78. PubMed ID: 22573268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cofermentation of glucose, xylose, and arabinose by mixed cultures of two genetically engineered Zymomonas mobilis strains.
    Mohagheghi A; Evans K; Finkelstein M; Zhang M
    Appl Biochem Biotechnol; 1998; 70-72():285-99. PubMed ID: 18575998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput sequencing reveals adaptation-induced mutations in pentose-fermenting strains of Zymomonas mobilis.
    Dunn KL; Rao CV
    Biotechnol Bioeng; 2015 Nov; 112(11):2228-40. PubMed ID: 25943255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of heterologous and native enzyme activity profiles in metabolically engineered Zymomonas mobilis strains during batch fermentation of glucose and xylose mixtures.
    Gao Q; Zhang M; McMillan JD; Kompala DS
    Appl Biochem Biotechnol; 2002; 98-100():341-55. PubMed ID: 12018261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of glucose/xylose co-fermentation by recombinant Zymomonas mobilis under different genetic and environmental conditions.
    Ma Y; Dong H; Zou S; Hong J; Zhang M
    Biotechnol Lett; 2012 Jul; 34(7):1297-304. PubMed ID: 22421973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conditions that promote production of lactic acid by Zymomonas mobilis in batch and continuous culture.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1998; 70-72():173-85. PubMed ID: 9627381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.