These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 12018482)

  • 1. Automated NMR determination of protein backbone dihedral angles from cross-correlated spin relaxation.
    Kloiber K; Schüler W; Konrat R
    J Biomol NMR; 2002 Apr; 22(4):349-63. PubMed ID: 12018482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of the protein backbone dihedral angle phi based on quantification of remote CSA/DD interference in inter-residue 13C'(i - 1)-13Calpha(i) multiple-quantum coherences.
    Kloiber K; Konrat R
    J Biomol NMR; 2000 Jul; 17(3):265-8. PubMed ID: 10959633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CO_H(N)CACB experiments for assigning backbone resonances in 13C/15N-labeled proteins.
    Astrof N; Bracken C; Cavanagh J; Palmer AG
    J Biomol NMR; 1998 May; 11(4):451-6. PubMed ID: 9691286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A tracked approach for automated NMR assignments in proteins (TATAPRO).
    Atreya HS; Sahu SC; Chary KV; Govil G
    J Biomol NMR; 2000 Jun; 17(2):125-36. PubMed ID: 10921777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance assignment of proteins with high shift degeneracy based on 5D spectral information encoded in G2FT NMR experiments.
    Atreya HS; Eletsky A; Szyperski T
    J Am Chem Soc; 2005 Apr; 127(13):4554-5. PubMed ID: 15796503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transverse relaxation optimised spin-state selective NMR experiments for measurement of residual dipolar couplings.
    Permi P; Annila A
    J Biomol NMR; 2000 Mar; 16(3):221-7. PubMed ID: 10805128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TROSY-based correlation and NOE spectroscopy for NMR structural studies of large proteins.
    Zhu G; Xia Y; Lin D; Gao X
    Methods Mol Biol; 2004; 278():57-78. PubMed ID: 15317991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid and accurate calculation of protein 1H, 13C and 15N chemical shifts.
    Neal S; Nip AM; Zhang H; Wishart DS
    J Biomol NMR; 2003 Jul; 26(3):215-40. PubMed ID: 12766419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of cross-correlated NMR spin relaxation to the zinc-finger protein CRP2(LIM2): evidence for collective motions in LIM domains.
    Schüler W; Kloiber K; Matt T; Bister K; Konrat R
    Biochemistry; 2001 Aug; 40(32):9596-604. PubMed ID: 11583159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure determination in "shiftless" solid state NMR of oriented protein samples.
    Yin Y; Nevzorov AA
    J Magn Reson; 2011 Sep; 212(1):64-73. PubMed ID: 21741286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of residual dipolar couplings from 1Halpha to 13Calpha and 15N using a simple HNCA-based experiment.
    Permi P
    J Biomol NMR; 2003 Dec; 27(4):341-9. PubMed ID: 14512731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pairwise NMR experiments for the determination of protein backbone dihedral angle Phi based on cross-correlated spin relaxation.
    Takahashi H; Shimada I
    J Biomol NMR; 2007 Mar; 37(3):179-85. PubMed ID: 17237977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Backbone dynamics and structural characterization of the partially folded A state of ubiquitin by 1H, 13C, and 15N nuclear magnetic resonance spectroscopy.
    Brutscher B; Brüschweiler R; Ernst RR
    Biochemistry; 1997 Oct; 36(42):13043-53. PubMed ID: 9335566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate measurement of longitudinal cross-relaxation rates in nuclear magnetic resonance.
    Pelupessy P; Ferrage F; Bodenhausen G
    J Chem Phys; 2007 Apr; 126(13):134508. PubMed ID: 17430048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the backbone torsion psi angle by tensor correlation of chemical shift anisotropy and heteronuclear dipole-dipole interaction.
    Mou Y; Tsai TW; Chan JC
    Solid State Nucl Magn Reson; 2007 Apr; 31(2):72-81. PubMed ID: 17329083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determinations of 15N chemical shift anisotropy magnitudes in a uniformly 15N,13C-labeled microcrystalline protein by three-dimensional magic-angle spinning nuclear magnetic resonance spectroscopy.
    Wylie BJ; Franks WT; Rienstra CM
    J Phys Chem B; 2006 Jun; 110(22):10926-36. PubMed ID: 16771346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying Lipari-Szabo modelfree parameters from 13CO NMR relaxation experiments.
    Wang T; Weaver DS; Cai S; Zuiderweg ER
    J Biomol NMR; 2006 Oct; 36(2):79-102. PubMed ID: 17013680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature dependence of protein backbone motion from carbonyl 13C and amide 15N NMR relaxation.
    Chang SL; Tjandra N
    J Magn Reson; 2005 May; 174(1):43-53. PubMed ID: 15809171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new 3D HN(CA)HA experiment for obtaining fingerprint HN-Halpha peaks in 15N- and 13C-labeled proteins.
    Clubb RT; Thanabal V; Wagner G
    J Biomol NMR; 1992 Mar; 2(2):203-10. PubMed ID: 1422153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A general strategy for the assignment of aliphatic side-chain resonances of uniformly 13C,15N-labeled large proteins.
    Xu Y; Lin Z; Ho C; Yang D
    J Am Chem Soc; 2005 Aug; 127(34):11920-1. PubMed ID: 16117513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.