These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
74 related articles for article (PubMed ID: 12018518)
1. Screening and in vitro production of diplodiatoxin from the isolates of Stenocarpella maydis and its toxigenic effect on bacterial strains. Rao SK; Achar PN Indian J Exp Biol; 2001 Dec; 39(12):1243-8. PubMed ID: 12018518 [TBL] [Abstract][Full Text] [Related]
2. Bioactive metabolites from Stenocarpella maydis, a stalk and ear rot pathogen of maize. Wicklow DT; Rogers KD; Dowd PF; Gloer JB Fungal Biol; 2011 Feb; 115(2):133-42. PubMed ID: 21315311 [TBL] [Abstract][Full Text] [Related]
3. Cytotoxicity of diplodiatoxin, dipmatol and diplonine, metabolites synthesized by Stenocarpella maydis. Masango MG; Ferreira GC; Ellis CE; Elgorashi EE; Botha CJ Toxicon; 2014 May; 82():26-9. PubMed ID: 24530231 [TBL] [Abstract][Full Text] [Related]
4. Diplodiatoxin, chaetoglobosins, and diplonine associated with a field outbreak of Stenocarpella ear rot in Illinois. Rogers KD; Cannistra JC; Gloer JB; Wicklow DT Mycotoxin Res; 2014 May; 30(2):61-70. PubMed ID: 24504633 [TBL] [Abstract][Full Text] [Related]
5. Failure of diplodiatoxin to induce diplodiosis in juvenile goats. Botha CJ; Ackerman LGJ; Masango MG; Arnot LF Onderstepoort J Vet Res; 2020 Mar; 87(1):e1-e4. PubMed ID: 32242425 [TBL] [Abstract][Full Text] [Related]
6. Characterization of cell death caused by diplodiatoxin and dipmatol, toxic metabolites of Stenocarpella maydis. Masango MG; Ellis CE; Botha CJ Toxicon; 2015 Aug; 102():14-24. PubMed ID: 26004494 [TBL] [Abstract][Full Text] [Related]
7. Effect of diplodiatoxin (Stenocarpella maydis) on some enzymatic profiles in male and female rats. Rahman MF; Rao SK; Achar PN Ecotoxicol Environ Saf; 2002 Jul; 52(3):267-72. PubMed ID: 12297089 [TBL] [Abstract][Full Text] [Related]
8. Cloning, characterization and expression of escapin, a broadly antimicrobial FAD-containing L-amino acid oxidase from ink of the sea hare Aplysia californica. Yang H; Johnson PM; Ko KC; Kamio M; Germann MW; Derby CD; Tai PC J Exp Biol; 2005 Sep; 208(Pt 18):3609-22. PubMed ID: 16155232 [TBL] [Abstract][Full Text] [Related]
9. Biochemical changes induced in liver and serum of diplodiatoxin (Stenocarpella maydis) treated male and female rats. Rao SK; Achar PN; Rahman MF Drug Chem Toxicol; 2003 Nov; 26(4):231-43. PubMed ID: 14582378 [TBL] [Abstract][Full Text] [Related]
10. The identification of antibacterial compounds for the development of enhanced media for the detection of foodborne fungi. Tournas VH; Kohn JS; Katsoudas EJ Int J Food Microbiol; 2007 Aug; 118(1):83-6. PubMed ID: 17574697 [TBL] [Abstract][Full Text] [Related]
11. Comparison of cultural and analytical methods for determination of aflatoxin production by Mississippi Delta Aspergillus isolates. Abbas HK; Zablotowicz RM; Weaver MA; Horn BW; Xie W; Shier WT Can J Microbiol; 2004 Mar; 50(3):193-9. PubMed ID: 15105886 [TBL] [Abstract][Full Text] [Related]
12. Antimicrobial compounds produced by Actinomadura sp. AC104 isolated from an Algerian Saharan soil. Badji B; Zitouni A; Mathieu F; Lebrihi A; Sabaou N Can J Microbiol; 2006 Apr; 52(4):373-82. PubMed ID: 16699588 [TBL] [Abstract][Full Text] [Related]
13. A new selective medium for the recovery and enumeration of Monilinia fructicola, M. fructigena, and M. laxa from stone fruits. Amiri A; Holb IJ; Schnabel G Phytopathology; 2009 Oct; 99(10):1199-208. PubMed ID: 19740034 [TBL] [Abstract][Full Text] [Related]
14. Study on the effect of neem (Azadirachta indica A. juss) leaf extract on the growth of Aspergillus parasiticus and production of aflatoxin by it at different incubation times. Ghorbanian M; Razzaghi-Abyaneh M; Allameh A; Shams-Ghahfarokhi M; Qorbani M Mycoses; 2008 Jan; 51(1):35-9. PubMed ID: 18076593 [TBL] [Abstract][Full Text] [Related]
15. Functional properties of selected starter cultures for sour maize bread. Edema MO; Sanni AI Food Microbiol; 2008 Jun; 25(4):616-25. PubMed ID: 18456117 [TBL] [Abstract][Full Text] [Related]
16. Antibiotic susceptibility of conjunctival bacterial isolates from refractive surgery patients. Chung JL; Seo KY; Yong DE; Mah FS; Kim TI; Kim EK; Kim JK Ophthalmology; 2009 Jun; 116(6):1067-74. PubMed ID: 19395038 [TBL] [Abstract][Full Text] [Related]
17. Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans. Das P; Mukherjee S; Sen R J Appl Microbiol; 2008 Jun; 104(6):1675-84. PubMed ID: 18194244 [TBL] [Abstract][Full Text] [Related]
18. A biological assay for the detection of Myrothecium spp. produced macrocyclic trichothecenes. Bean GA; Jarvis BB; Aboul-Nasr MB Mycopathologia; 1992 Sep; 119(3):175-80. PubMed ID: 1435958 [TBL] [Abstract][Full Text] [Related]
19. Antimicrobial activity of tigecycline tested against nosocomial bacterial pathogens from patients hospitalized in the intensive care unit. Sader HS; Jones RN; Dowzicky MJ; Fritsche TR Diagn Microbiol Infect Dis; 2005 Jul; 52(3):203-8. PubMed ID: 16105565 [TBL] [Abstract][Full Text] [Related]
20. Molecular and biochemical characterization of Iranian surfactin-producing Bacillus subtilis isolates and evaluation of their biocontrol potential against Aspergillus flavus and Colletotrichum gloeosporioides. Mohammadipour M; Mousivand M; Salehi Jouzani G; Abbasalizadeh S Can J Microbiol; 2009 Apr; 55(4):395-404. PubMed ID: 19396239 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]