These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 12018592)

  • 1. Minimum effective release rate of antifoulants.1. Effects of zosteric acid at Ford Island, Hawaii (USA).
    Shin HW; Smith CM; Haslbeck EG
    J Environ Biol; 2001 Oct; 22(4):243-50. PubMed ID: 12018592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimum effective release rate of antifoulants. 2. Effects of TBTCI, 2-furyl-n-pentyl ketone and coumaric acid at Snug harbor, Hawaii.
    Shin HW; Smith CM
    J Environ Biol; 2002 Jan; 23(1):71-5. PubMed ID: 12617321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antifouling activity of six nontoxic chemicals on spore attachment of Ulva fasciata.
    Shin HW; Smith CM
    J Environ Biol; 2001 Jul; 22(3):145-51. PubMed ID: 12017253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of antifouling effectiveness of two natural product antifoulants by attachment study with freshwater bacteria.
    Xu Q; Barrios CA; Cutright T; Newby BM
    Environ Sci Pollut Res Int; 2005 Sep; 12(5):278-84. PubMed ID: 16206721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Minimum effective release rate of antifoulants (2): Measurement of the effect of TBT and zosteric acid on hard fouling.
    Haslbeck EG; Kavanagh CJ; Shin HW; Banta WC; Song P; Loeb GI
    Biofouling; 1996; 10(1-3):175-86. PubMed ID: 22115110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of toxicity of capsaicin and zosteric acid and their potential application as antifoulants.
    Xu Q; Barrios CA; Cutright T; Zhang Newby BM
    Environ Toxicol; 2005 Oct; 20(5):467-74. PubMed ID: 16161071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper affects biofilm inductiveness to larval settlement of the serpulid polychaete Hydroides elegans (Haswell).
    Bao WY; Lee OO; Chung HC; Li M; Qian PY
    Biofouling; 2010 Jan; 26(1):119-28. PubMed ID: 20390562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial community succession and chemical profiles of subtidal biofilms in relation to larval settlement of the polychaete Hydroides elegans.
    Chung HC; Lee OO; Huang YL; Mok SY; Kolter R; Qian PY
    ISME J; 2010 Jun; 4(6):817-28. PubMed ID: 20090788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypoxia induces abnormal larval development and affects biofilm-larval interaction in the serpulid polychaete Hydroides elegans.
    Shin PK; Leung JY; Qiu JW; Ang PO; Chiu JM; Thiyagarajan V; Cheung SG
    Mar Pollut Bull; 2013 Nov; 76(1-2):291-7. PubMed ID: 24050126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid attachment of spores of the fouling alga Ulva fasciata on biofilms.
    Shin HW
    J Environ Biol; 2008 Jul; 29(4):613-9. PubMed ID: 19195406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adrenoceptor compounds prevent the settlement of marine invertebrate larvae: Balanus amphitrite (Cirripedia), Bugula neritina (Bryozoa) and Hydroides elegans (Polychaeta).
    Dahms HU; Jin T; Qian PY
    Biofouling; 2004 Dec; 20(6):313-21. PubMed ID: 15804715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antifouling strategies for marine and riverine sensors.
    Whelan A; Regan F
    J Environ Monit; 2006 Sep; 8(9):880-6. PubMed ID: 16951747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfation mediates activity of zosteric acid against biofilm formation.
    Kurth C; Cavas L; Pohnert G
    Biofouling; 2015; 31(3):253-63. PubMed ID: 25915112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical control of bacterial epibiosis and larval settlement of Hydroides elegans in the red sponge Mycale adherens.
    Lee OO; Qian PY
    Biofouling; 2003 Apr; 19 Suppl():171-80. PubMed ID: 14618717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered antifouling microtopographies - effect of feature size, geometry, and roughness on settlement of zoospores of the green alga Ulva.
    Schumacher JF; Carman ML; Estes TG; Feinberg AW; Wilson LH; Callow ME; Callow JA; Finlay JA; Brennan AB
    Biofouling; 2007; 23(1-2):55-62. PubMed ID: 17453729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An antifouling model from the sea: a review of 25 years of zosteric acid studies.
    Vilas-Boas C; Sousa E; Pinto M; Correia-da-Silva M
    Biofouling; 2017 Nov; 33(10):927-942. PubMed ID: 29171304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GLYCOCONJUGATE ORGANIZATION OF ENTEROMORPHA (=ULVA) FLEXUOSA AND ULVA FASCIATA (CHLOROPHYTA) ZOOSPORES(1).
    Michael TS
    J Phycol; 2009 Jun; 45(3):660-77. PubMed ID: 27034043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biofouling and antifouling.
    Fusetani N
    Nat Prod Rep; 2004 Feb; 21(1):94-104. PubMed ID: 15039837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporating zosteric acid into silicone coatings to achieve its slow release while reducing fresh water bacterial attachment.
    Barrios CA; Xu Q; Cutright T; Newby BM
    Colloids Surf B Biointerfaces; 2005 Mar; 41(2-3):83-93. PubMed ID: 15737532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Larval development and post-settlement metamorphosis of the barnacle Balanus albicostatus Pilsbry and the serpulid polychaete Pomatoleios kraussii Baird: Impact of a commonly used antifouling biocide, Irgarol 1051.
    Khandeparker L; Desai D; Shirayama Y
    Biofouling; 2005; 21(3-4):169-80. PubMed ID: 16371337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.