BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 12018745)

  • 41. Study on the response of indigenously developed CaSO4:Dy phosphor-based neutron dosemeter.
    Bakshi AK; Pradhan AS; Kher RK; Srivastava K; Varadharajan G; Chatterjee S; Sathian V
    Radiat Prot Dosimetry; 2009 Jan; 133(2):73-80. PubMed ID: 19264830
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Using LiF:Mg,Cu,P TLDs to estimate the absorbed dose to water in liquid water around an 192Ir brachytherapy source.
    Lucas PA; Aubineau-Lanièce I; Lourenço V; Vermesse D; Cutarella D
    Med Phys; 2014 Jan; 41(1):011711. PubMed ID: 24387503
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The application of CaSO4:Dy (TLD-900) to diagnostic x-ray exposures.
    Niroomand-Rad A; DeWerd LA
    Med Phys; 1983; 10(5):691-4. PubMed ID: 6646078
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In-phantom response of LiF TLD-100 for dosimetry of 192Ir HDR source.
    Pradhan AS; Quast U
    Med Phys; 2000 May; 27(5):1025-9. PubMed ID: 10841406
    [TBL] [Abstract][Full Text] [Related]  

  • 45. BETA DOSE EVALUATION ALGORITHM FOR CaSO4:Dy BYSED TLD BADGE USED IN COUNTRYWIDE PERSONNEL MONITORING PROGRAMME IN INDIA.
    Rakesh RB; Kumar M; Sneha C; Ratna P; Datta D
    Radiat Prot Dosimetry; 2017 Jun; 175(1):96-103. PubMed ID: 27765890
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Response of ionization chamber based pocket dosimeter to beta radiation.
    Kumar M; Gupta A; Pradhan SM; Bakshi AK; Chougaonkar MP; Babu DA
    Appl Radiat Isot; 2013 Dec; 82():130-2. PubMed ID: 23978508
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The low energy X-ray response of the LiF:Mg:Cu:P thermoluminescent dosemeter: a comparison with LiF:Mg:Ti.
    Edwards CR; Mountford PJ; Green S; Palethorpe JE; Moloney AJ
    Br J Radiol; 2005 Jun; 78(930):543-7. PubMed ID: 15900061
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluation of uncertainty in personal dose measured using CaSO4:Dy-based TLD badge at different workplaces.
    Pradhan SM; Pathan MS; Chakrabarty S; Selvam TP; Sapra BK
    Radiat Prot Dosimetry; 2024 Jun; 200(10):890-900. PubMed ID: 38847419
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Experimental determination of the photon-energy dependent dose-to-water response of TLD600 and TLD700 (LiF:Mg,Ti) thermoluminescence detectors.
    Schwahofer A; Feist H; Georg H; Häring P; Schlegel W
    Z Med Phys; 2017 Mar; 27(1):13-20. PubMed ID: 26972816
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Monte Carlo study of the quality dependence factors of common TLD materials in photon and electron beams.
    Mobit PN; Nahum AE; Mayles P
    Phys Med Biol; 1998 Aug; 43(8):2015-32. PubMed ID: 9725586
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Are all photon radiations similar in large absorbers?--a comparison of electron spectra.
    Kellerer AM; Roos H
    Radiat Prot Dosimetry; 2005; 113(3):245-50. PubMed ID: 15695239
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effect of ultra-violet and visible radiation on CaSO4:Dy in Teflon discs used for personnel gamma-radiation monitoring.
    Calvert RL; Young JG; Bartnik DL
    Health Phys; 1984 Feb; 46(2):275-81. PubMed ID: 6693258
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Monte Carlo study of the quality dependence of diamond thermoluminescent dosimeters in radiotherapy beams.
    Mobit PN; Nahum AE; Mayles P
    Phys Med Biol; 1997 Oct; 42(10):1913-27. PubMed ID: 9364587
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Response of thermoluminescent detectors to charged particles and to neutrons.
    Spurný F
    Radiat Meas; 2004; 38(4-6):407-12. PubMed ID: 15856571
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development of a technique for improving coefficient of variation of CaSO4:Dy teflon-based TLD personnel monitoring system in low-dose region.
    Pradhan SM; Sneha C; Sahai MK; Chougaonkar MP; Babu DA
    Radiat Prot Dosimetry; 2015 Dec; 167(4):429-36. PubMed ID: 25527179
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vivo absorbed dose measurements with mini-TLDs--parameters affecting the reliability.
    Strandh M; Strand SE
    Acta Oncol; 1996; 35(6):713-9. PubMed ID: 8938219
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Energy response of LiF (TLD-100) and CaSO4:Dy TL dosimeters to different diagnostic spectra.
    Servomaa AJ
    Eur J Radiol; 1985 Aug; 5(3):236-9. PubMed ID: 4029163
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation of the clinical use of TLD.
    Rudén BI
    Acta Radiol Ther Phys Biol; 1976 Oct; 15(5):447-64. PubMed ID: 827192
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The development of thin CaSO4:Dy teflon TL dosimeters for beta dosimetry in personnel monitoring.
    Lakshmanan AR; Chandra B; Pradhan AS; Kher RK; Bhatt RC
    Int J Appl Radiat Isot; 1980 Feb; 31(2):107-10. PubMed ID: 7364498
    [No Abstract]   [Full Text] [Related]  

  • 60. Batch-to-batch variation in the TL glow peaks and sensitivity in the production of CaSO4:Dy TLD phosphor.
    Bakshi AK; Pradhan AS
    Radiat Prot Dosimetry; 2003; 107(4):281-6. PubMed ID: 14756186
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.