BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 12019135)

  • 1. Nonradiolabeling assay for WaaP, an essential sugar kinase involved in biosynthesis of core lipopolysaccharide of Pseudomonas aeruginosa.
    Zhao X; Wenzel CQ; Lam JS
    Antimicrob Agents Chemother; 2002 Jun; 46(6):2035-7. PubMed ID: 12019135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. WaaP of Pseudomonas aeruginosa is a novel eukaryotic type protein-tyrosine kinase as well as a sugar kinase essential for the biosynthesis of core lipopolysaccharide.
    Zhao X; Lam JS
    J Biol Chem; 2002 Feb; 277(7):4722-30. PubMed ID: 11741974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipopolysaccharide (LPS) inner-core phosphates are required for complete LPS synthesis and transport to the outer membrane in Pseudomonas aeruginosa PAO1.
    Delucia AM; Six DA; Caughlan RE; Gee P; Hunt I; Lam JS; Dean CR
    mBio; 2011; 2(4):. PubMed ID: 21810964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and characterization of WaaP from Escherichia coli, a lipopolysaccharide kinase essential for outer membrane stability.
    Yethon JA; Whitfield C
    J Biol Chem; 2001 Feb; 276(8):5498-504. PubMed ID: 11069912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acylated-acyl carrier protein stabilizes the Pseudomonas aeruginosa WaaP lipopolysaccharide heptose kinase.
    Kreamer NNK; Chopra R; Caughlan RE; Fabbro D; Fang E; Gee P; Hunt I; Li M; Leon BC; Muller L; Vash B; Woods AL; Stams T; Dean CR; Uehara T
    Sci Rep; 2018 Sep; 8(1):14124. PubMed ID: 30237436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipopolysaccharide core phosphates are required for viability and intrinsic drug resistance in Pseudomonas aeruginosa.
    Walsh AG; Matewish MJ; Burrows LL; Monteiro MA; Perry MB; Lam JS
    Mol Microbiol; 2000 Feb; 35(4):718-27. PubMed ID: 10692150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monoclonal antibodies that distinguish inner core, outer core, and lipid A regions of Pseudomonas aeruginosa lipopolysaccharide.
    de Kievit TR; Lam JS
    J Bacteriol; 1994 Dec; 176(23):7129-39. PubMed ID: 7525538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative immunochemistry of lipopolysaccharides from typable and polyagglutinable Pseudomonas aeruginosa strains isolated from patients with cystic fibrosis.
    Fomsgaard A; Conrad RS; Galanos C; Shand GH; Høiby N
    J Clin Microbiol; 1988 May; 26(5):821-6. PubMed ID: 3133386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhamnosyltransferase genes migA and wapR are regulated in a differential manner to modulate the quantities of core oligosaccharide glycoforms produced by Pseudomonas aeruginosa.
    Kocíncová D; Ostler SL; Anderson EM; Lam JS
    J Bacteriol; 2012 Aug; 194(16):4295-300. PubMed ID: 22685285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pseudomonas aeruginosa galU is required for a complete lipopolysaccharide core and repairs a secondary mutation in a PA103 (serogroup O11) wbpM mutant.
    Dean CR; Goldberg JB
    FEMS Microbiol Lett; 2002 May; 210(2):277-83. PubMed ID: 12044687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of a human monoclonal antibody that recognizes epitopes shared by Pseudomonas aeruginosa immunotype 1, 3, 4, and 6 lipopolysaccharides.
    Lang AB; Fürer E; Larrick JW; Cryz SJ
    Infect Immun; 1989 Dec; 57(12):3851-5. PubMed ID: 2509371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production and characterisation of mouse monoclonal antibodies reactive with the lipopolysaccharide core of Pseudomonas aeruginosa.
    Nelson JW; Barclay GR; Micklem LR; Poxton IR; Govan JR
    J Med Microbiol; 1992 May; 36(5):358-65. PubMed ID: 1588587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variable cross-reactivity of Pseudomonas aeruginosa lipopolysaccharide-code-specific monoclonal antibodies and its possible relationship with serotype.
    Yokota S; Terashima M; Chiba J; Noguchi H
    J Gen Microbiol; 1992 Feb; 138(2):289-96. PubMed ID: 1564440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Nucleotide Polymorphisms Found in the migA and wbpX Glycosyltransferase Genes Account for the Intrinsic Lipopolysaccharide Defects Exhibited by Pseudomonas aeruginosa PA14.
    Hao Y; Murphy K; Lo RY; Khursigara CM; Lam JS
    J Bacteriol; 2015 Sep; 197(17):2780-91. PubMed ID: 26078447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three rhamnosyltransferases responsible for assembly of the A-band D-rhamnan polysaccharide in Pseudomonas aeruginosa: a fourth transferase, WbpL, is required for the initiation of both A-band and B-band lipopolysaccharide synthesis.
    Rocchetta HL; Burrows LL; Pacan JC; Lam JS
    Mol Microbiol; 1998 Jun; 28(6):1103-19. PubMed ID: 9680202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review: Lipopolysaccharide biosynthesis in Pseudomonas aeruginosa.
    King JD; Kocíncová D; Westman EL; Lam JS
    Innate Immun; 2009 Oct; 15(5):261-312. PubMed ID: 19710102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salmonella enterica serovar typhimurium waaP mutants show increased susceptibility to polymyxin and loss of virulence In vivo.
    Yethon JA; Gunn JS; Ernst RK; Miller SI; Laroche L; Malo D; Whitfield C
    Infect Immun; 2000 Aug; 68(8):4485-91. PubMed ID: 10899846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Longitudinal study of antibody response to lipopolysaccharides during chronic Pseudomonas aeruginosa lung infection in cystic fibrosis.
    Fomsgaard A; Høiby N; Shand GH; Conrad RS; Galanos C
    Infect Immun; 1988 Sep; 56(9):2270-8. PubMed ID: 3410536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and function of sedoheptulose-7-phosphate isomerase, a critical enzyme for lipopolysaccharide biosynthesis and a target for antibiotic adjuvants.
    Taylor PL; Blakely KM; de Leon GP; Walker JR; McArthur F; Evdokimova E; Zhang K; Valvano MA; Wright GD; Junop MS
    J Biol Chem; 2008 Feb; 283(5):2835-45. PubMed ID: 18056714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosynthesis of a rare di-N-acetylated sugar in the lipopolysaccharides of both Pseudomonas aeruginosa and Bordetella pertussis occurs via an identical scheme despite different gene clusters.
    Westman EL; Preston A; Field RA; Lam JS
    J Bacteriol; 2008 Sep; 190(18):6060-9. PubMed ID: 18621892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.