These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 12019312)

  • 1. In vivo imaging of functional inhibitory networks on the mauthner cell of larval zebrafish.
    Takahashi M; Narushima M; Oda Y
    J Neurosci; 2002 May; 22(10):3929-38. PubMed ID: 12019312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavioral Role of the Reciprocal Inhibition between a Pair of Mauthner Cells during Fast Escapes in Zebrafish.
    Shimazaki T; Tanimoto M; Oda Y; Higashijima SI
    J Neurosci; 2019 Feb; 39(7):1182-1194. PubMed ID: 30578342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patch clamp recordings from embryonic zebrafish Mauthner cells.
    Roy B; Ali DW
    J Vis Exp; 2013 Sep; (79):. PubMed ID: 24056693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional role of a specialized class of spinal commissural inhibitory neurons during fast escapes in zebrafish.
    Satou C; Kimura Y; Kohashi T; Horikawa K; Takeda H; Oda Y; Higashijima S
    J Neurosci; 2009 May; 29(21):6780-93. PubMed ID: 19474306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Common sensory inputs and differential excitability of segmentally homologous reticulospinal neurons in the hindbrain.
    Nakayama H; Oda Y
    J Neurosci; 2004 Mar; 24(13):3199-209. PubMed ID: 15056699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slow inhibitory potentials in the teleost Mauthner cell.
    Hatta K; Ankri N; Faber DS; Korn H
    Neuroscience; 2001; 103(2):561-79. PubMed ID: 11246169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacological evidence for two types of postsynaptic glycinergic receptors on the Mauthner cell of 52-h-old zebrafish larvae.
    Legendre P
    J Neurophysiol; 1997 May; 77(5):2400-15. PubMed ID: 9163366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency-dependent modulation of glycine receptor activation recorded from the zebrafish larvae hindbrain.
    Rigo JM; Legendre P
    Neuroscience; 2006 Jun; 140(2):389-402. PubMed ID: 16564635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensory activation and role of inhibitory reticulospinal neurons that stop swimming in hatchling frog tadpoles.
    Perrins R; Walford A; Roberts A
    J Neurosci; 2002 May; 22(10):4229-40. PubMed ID: 12019340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A reluctant gating mode of glycine receptor channels determines the time course of inhibitory miniature synaptic events in zebrafish hindbrain neurons.
    Legendre P
    J Neurosci; 1998 Apr; 18(8):2856-70. PubMed ID: 9526003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Presynaptic glycine receptors on GABAergic terminals facilitate discharge of dopaminergic neurons in ventral tegmental area.
    Ye JH; Wang F; Krnjevic K; Wang W; Xiong ZG; Zhang J
    J Neurosci; 2004 Oct; 24(41):8961-74. PubMed ID: 15483115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the glycinergic input to bipolar cells of the mouse retina.
    Ivanova E; Müller U; Wässle H
    Eur J Neurosci; 2006 Jan; 23(2):350-64. PubMed ID: 16420443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of various K+ channel blockers on spontaneous glycine release at rat spinal neurons.
    Shoudai K; Nonaka K; Maeda M; Wang ZM; Jeong HJ; Higashi H; Murayama N; Akaike N
    Brain Res; 2007 Jul; 1157():11-22. PubMed ID: 17555723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for a widespread brain stem escape network in larval zebrafish.
    Gahtan E; Sankrithi N; Campos JB; O'Malley DM
    J Neurophysiol; 2002 Jan; 87(1):608-14. PubMed ID: 11784774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms controlling bursting activity induced by disinhibition in spinal cord networks.
    Darbon P; Scicluna L; Tscherter A; Streit J
    Eur J Neurosci; 2002 Feb; 15(4):671-83. PubMed ID: 11886448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity-dependent maintenance of long-term potentiation at visual cortical inhibitory synapses.
    Komatsu Y; Yoshimura Y
    J Neurosci; 2000 Oct; 20(20):7539-46. PubMed ID: 11027212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intraglomerular inhibition: signaling mechanisms of an olfactory microcircuit.
    Murphy GJ; Darcy DP; Isaacson JS
    Nat Neurosci; 2005 Mar; 8(3):354-64. PubMed ID: 15696160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholinergic control of firing pattern and neurotransmission in rat neostriatal projection neurons: role of CaV2.1 and CaV2.2 Ca2+ channels.
    Perez-Rosello T; Figueroa A; Salgado H; Vilchis C; Tecuapetla F; Guzman JN; Galarraga E; Bargas J
    J Neurophysiol; 2005 May; 93(5):2507-19. PubMed ID: 15615835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. "In vivo" monitoring of neuronal network activity in zebrafish by two-photon Ca(2+) imaging.
    Brustein E; Marandi N; Kovalchuk Y; Drapeau P; Konnerth A
    Pflugers Arch; 2003 Sep; 446(6):766-73. PubMed ID: 12883893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium channels involved in synaptic transmission from reticulospinal axons in lamprey.
    Krieger P; Büschges A; el Manira A
    J Neurophysiol; 1999 Apr; 81(4):1699-705. PubMed ID: 10200205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.