These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 12019314)
1. Glial cell line-derived neurotrophic factor promotes the survival of early postnatal spinal motor neurons in the lateral and medial motor columns in slice culture. Rakowicz WP; Staples CS; Milbrandt J; Brunstrom JE; Johnson EM J Neurosci; 2002 May; 22(10):3953-62. PubMed ID: 12019314 [TBL] [Abstract][Full Text] [Related]
2. A dynamic regulation of GDNF-family receptors correlates with a specific trophic dependency of cranial motor neuron subpopulations during development. Mikaels A; Livet J; Westphal H; De Lapeyrière O; Ernfors P Eur J Neurosci; 2000 Feb; 12(2):446-56. PubMed ID: 10712625 [TBL] [Abstract][Full Text] [Related]
3. Glial cell line-derived neurotrophic factor and developing mammalian motoneurons: regulation of programmed cell death among motoneuron subtypes. Oppenheim RW; Houenou LJ; Parsadanian AS; Prevette D; Snider WD; Shen L J Neurosci; 2000 Jul; 20(13):5001-11. PubMed ID: 10864958 [TBL] [Abstract][Full Text] [Related]
4. Receptors of the glial cell line-derived neurotrophic factor family of neurotrophic factors signal cell survival through the phosphatidylinositol 3-kinase pathway in spinal cord motoneurons. Soler RM; Dolcet X; Encinas M; Egea J; Bayascas JR; Comella JX J Neurosci; 1999 Nov; 19(21):9160-9. PubMed ID: 10531419 [TBL] [Abstract][Full Text] [Related]
5. Analysis of the retrograde transport of glial cell line-derived neurotrophic factor (GDNF), neurturin, and persephin suggests that in vivo signaling for the GDNF family is GFRalpha coreceptor-specific. Leitner ML; Molliver DC; Osborne PA; Vejsada R; Golden JP; Lampe PA; Kato AC; Milbrandt J; Johnson EM J Neurosci; 1999 Nov; 19(21):9322-31. PubMed ID: 10531437 [TBL] [Abstract][Full Text] [Related]
6. Evidence for a ligand-specific signaling through GFRalpha-1, but not GFRalpha-2, in the absence of Ret. Pezeshki G; Franke B; Engele J J Neurosci Res; 2001 Nov; 66(3):390-5. PubMed ID: 11746356 [TBL] [Abstract][Full Text] [Related]
7. GFRalpha 1 is required for development of distinct subpopulations of motoneuron. Garcès A; Haase G; Airaksinen MS; Livet J; Filippi P; deLapeyrière O J Neurosci; 2000 Jul; 20(13):4992-5000. PubMed ID: 10864957 [TBL] [Abstract][Full Text] [Related]
8. Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor are required simultaneously for survival of dopaminergic primary sensory neurons in vivo. Erickson JT; Brosenitsch TA; Katz DM J Neurosci; 2001 Jan; 21(2):581-9. PubMed ID: 11160437 [TBL] [Abstract][Full Text] [Related]
9. Differential expression of the GDNF family receptors RET and GFRalpha1, 2, and 4 in subsets of motoneurons: a relationship between motoneuron birthdate and receptor expression. Homma S; Yaginuma H; Vinsant S; Seino M; Kawata M; Gould T; Shimada T; Kobayashi N; Oppenheim RW J Comp Neurol; 2003 Feb; 456(3):245-59. PubMed ID: 12528189 [TBL] [Abstract][Full Text] [Related]
10. Neurturin enhances the survival of axotomized retinal ganglion cells in vivo: combined effects with glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor. Koeberle PD; Ball AK Neuroscience; 2002; 110(3):555-67. PubMed ID: 11906793 [TBL] [Abstract][Full Text] [Related]
11. Synergistic effects of schwann- and muscle-derived factors on motoneuron survival involve GDNF and cardiotrophin-1 (CT-1). Arce V; Pollock RA; Philippe JM; Pennica D; Henderson CE; deLapeyrière O J Neurosci; 1998 Feb; 18(4):1440-8. PubMed ID: 9454853 [TBL] [Abstract][Full Text] [Related]
12. Complementary and overlapping expression of glial cell line-derived neurotrophic factor (GDNF), c-ret proto-oncogene, and GDNF receptor-alpha indicates multiple mechanisms of trophic actions in the adult rat CNS. Trupp M; Belluardo N; Funakoshi H; Ibáñez CF J Neurosci; 1997 May; 17(10):3554-67. PubMed ID: 9133379 [TBL] [Abstract][Full Text] [Related]
13. Cyclic AMP elevation is sufficient to promote the survival of spinal motor neurons in vitro. Hanson MG; Shen S; Wiemelt AP; McMorris FA; Barres BA J Neurosci; 1998 Sep; 18(18):7361-71. PubMed ID: 9736656 [TBL] [Abstract][Full Text] [Related]
14. Glial cell line-derived neurotrophic factor rescues target-deprived sympathetic spinal cord neurons but requires transforming growth factor-beta as cofactor in vivo. Schober A; Hertel R; Arumäe U; Farkas L; Jaszai J; Krieglstein K; Saarma M; Unsicker K J Neurosci; 1999 Mar; 19(6):2008-15. PubMed ID: 10066254 [TBL] [Abstract][Full Text] [Related]
15. Neuroprotection of glial cell line-derived neurotrophic factor in damaged spinal cords following contusive injury. Cheng H; Wu JP; Tzeng SF J Neurosci Res; 2002 Aug; 69(3):397-405. PubMed ID: 12125080 [TBL] [Abstract][Full Text] [Related]
16. The neurotrophic effects of glial cell line-derived neurotrophic factor on spinal motoneurons are restricted to fusimotor subtypes. Gould TW; Yonemura S; Oppenheim RW; Ohmori S; Enomoto H J Neurosci; 2008 Feb; 28(9):2131-46. PubMed ID: 18305247 [TBL] [Abstract][Full Text] [Related]
17. Expression of GDNF family receptor components during development: implications in the mechanisms of interaction. Yu T; Scully S; Yu Y; Fox GM; Jing S; Zhou R J Neurosci; 1998 Jun; 18(12):4684-96. PubMed ID: 9614243 [TBL] [Abstract][Full Text] [Related]
18. New roles for glial cell line-derived neurotrophic factor and neurturin: involvement in hair cycle control. Botchkareva NV; Botchkarev VA; Welker P; Airaksinen M; Roth W; Suvanto P; Müller-Röver S; Hadshiew IM; Peters C; Paus R Am J Pathol; 2000 Mar; 156(3):1041-53. PubMed ID: 10702420 [TBL] [Abstract][Full Text] [Related]
19. Positive and negative interactions of GDNF, NTN and ART in developing sensory neuron subpopulations, and their collaboration with neurotrophins. Baudet C; Mikaels A; Westphal H; Johansen J; Johansen TE; Ernfors P Development; 2000 Oct; 127(20):4335-44. PubMed ID: 11003834 [TBL] [Abstract][Full Text] [Related]
20. Signalling by the RET receptor tyrosine kinase and its role in the development of the mammalian enteric nervous system. Taraviras S; Marcos-Gutierrez CV; Durbec P; Jani H; Grigoriou M; Sukumaran M; Wang LC; Hynes M; Raisman G; Pachnis V Development; 1999 Jun; 126(12):2785-97. PubMed ID: 10331988 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]